
Armis Centrix™
Google Chronicle
November 7, 2023

Disclaimer: This integration may not yet be available in your environment.

Please contact your account team.

Table of contents

Table of contents

1 Overview 3

2 Prerequisites 4

3 Steps for deploying and executing the ingestion script 4

3.1 Add the secret in Secret Manager 4

3.2 Deploying the function on GCloud 5

3.3 Steps to create the scheduler 6

3.4 Setting up the directory 6

3.5 Setting the required runtime environment variables 6

3.5.1 Configuring the namespace 7

3.5.2 Using Secrets 7

4 View Parsed logs in the Chronicle UI 8

5 Mappings 9

5.1 Alerts field mapping 9

5.2 Activities field mapping 10

5.3 Devices field mapping 12

5.4 Vulnerabilities field mapping 13

6 Limitations 17

7 Steps to fetch the historical data 18

8 Troubleshooting 18

9 References 18

© Copyright Armis Security 2023 2

1 Overview

This document describes how to deploy and configure the ingestion script for Armis Chronicle
Integration.

Chronicle Platform—Chronicle is a cybersecurity telemetry platform for threat hunting, and threat
intelligence and is part of the Google Cloud Platform. Chronicle stores log events it receives in two
formats: either as the original raw log or structured Unified Data Model (UDM) log. There are two
critical elements to consider for parsing, Unified Data Model (UDM) which defines the schema for
parsing, and Configuration Based Normalizers (CBN) which describes how to log data is transformed
to the UDM schema.

Armis Centrix™—Armis offers the market's leading asset intelligence platform designed to address
the new threat landscape that connected devices create. It provides passive and unparalleled
cybersecurity asset management, risk management, and automated enforcement.

Chronicle Integration for Armis—The Chronicle integration for Armis enables the transfer and
parsing of Armis Alerts, Activities, Devices, and Vulnerabilities in the Chronicle. These parsed events
can be utilized for search, reporting, and visualization workflows.

The ingestion script ingests the following types of event categories:

Armis Alerts

Armis Activities

Armis Devices

Armis Vulnerabilities

Google Chronicle 3

2 Prerequisites

customer_id and service_account for the Chronicle.

A secret_key and URL for Armis.

Poll interval and Scheduler time should be the same. If the poll interval and scheduler time are not the
same then data loss (Poll interval > Scheduler time) or data duplication (Poll interval > Scheduler time)
may occur.

Secret Manager should be configured and it should contain values of the secret_key of Armis and service
account details of Chronicle.

4-core CPU is recommended for cloud function configuration.

3 Steps for deploying and executing the ingestion script

3.1 Add the secret in Secret Manager

1. Log in to the https://console.cloud.google.com/ using valid credentials.

2. Navigate to the Secret Manager.

3. Click Create Secret.

4. Provide the name for the secret in the Name field.

5. Upload the file if there is a file for the secret, or provide the secret value directly in the Secret Value
field.

6. Click Create Secret.

For more information about how to create secrets, refer to this page.

Once the secrets are created in the Secret Manager, use the secret's resource ID as the value for
environment variables. For example

CHRONICLE_SERVICE_ACCOUNT:
projects/{project_id}/secrets/{secret_id}/versions/{version_id}

© Copyright Armis Security 2023 4

https://console.cloud.google.com/
https://cloud.google.com/secret-manager/docs/creating-and-accessing-secrets#create

3.2 Deploying the function on GCloud

1. Insert the necessary details into the .env.yml file.

CHRONICLE_CUSTOMER_ID:
CHRONICLE_REGION: “us”
CHRONICLE_SERVICE_ACCOUNT: <use the path of service account created in the
secret manager>
CHRONICLE_NAMESPACE:
POLL_INTERVAL: “10”
ARMIS_SERVER_URL:
ARMIS_API_SECRET_KEY: <use the path of the secret key created in the secret
manager>
HTTPS_PROXY:
CHRONICLE_DATA_TYPE:

2. Run the command for Gen1: (add the required function in the command).

Command for deploying Cloud Function using CLI for Gen1

gcloud functions deploy <FUNCTION NAME> --entry-point main --trigger-http
--runtime python39 --env-vars-file .env.yml

Run the command for Gen2: (add the required function in the command).

Command for deploying Cloud Function using CLI for Gen2

gcloud functions deploy <FUNCTION NAME> --gen2 --entry-point main --
trigger-http --
runtime python39 --env-vars-file .env.yml

3. Verify the function manually for Gen1:

1. Click the deployed function.

2. Navigate to the Testingmodule.

3. Click the Test the function button.

4. Navigate to the Logsmodule.

Verify the function manually for Gen2:

1. Click the deployed function.

2. Navigate to the Testingmodule.

3. Click the TEST IN CLOUD SHELL button.

4. Hit to enters the cloud shell terminal.

5. Navigate to the Logsmodule.

Google Chronicle 5

4. Cloud Function Default Specifications:

Variable Default Value Description

Memory 256 MB Allocated memory for a specific cloud function.

Timeout 60 seconds Time Interval for the termination of a cloud function.

Region us-central1 Region for a cloud function.

Minimum instances 0 Minimum number of instances for a cloud function.

Maximum instances 100 Maximum number of instances for a cloud function.

You can find the configuration documentation of the above variables here: link

3.3 Steps to create the scheduler

1. Log in to the https://console.cloud.google.com/ using valid credentials.

2. Navigate to Cloud scheduler.

3. Click Create a Job.

4. Give the name of the scheduler job.

5. Select the frequency for when the scheduler job should invoke.

6. Select the time zone and click Continue.

7. Select the target type as HTTP.

8. In the GCloud interface, navigate to trigger sections and copy the trigger URL of the function that the
user needs to create a scheduler and paste it into the URL.

9. Select Add OIDC Token in Auth Header.

10. Select the Service account.

11. Click Create.

3.4 Setting up the directory

Create a new directory for the cloud function deployment and add the following files into that directory:

1. Contents of ingestion script (i.e., armis).

2. common directory.

3.5 Setting the required runtime environment variables

Navigate to the .env.yml file which can be found in the folder of every event category.

Edit the .env.yml file to populate all the required environment variables.

NOTE: Information related to all the environment variables can be found in the README.md file.

© Copyright Armis Security 2023 6

https://cloud.google.com/functions/docs/configuring
https://console.cloud.google.com/

Below are environment variables that need to be added in the .env.yml file.

Variable Description Example dummy value Required Default Secret

CHRONICLE_
CUSTOMER_ID

Chronicle customer ID. 00000000-0000-0000-
0000-000000000000

Yes - No

CHRONICLE_
REGION

Chronicle region. us Yes us No

CHRONICLE_
SERVICE_
ACCOUNT

Path of the Google Secret
Manager with the version,
where the Chronicle Service
Account is stored.

projects/{project_
id}/secrets/{secret_
id}/versions/{version_
id}

Yes - Yes

CHRONICLE_
NAMESPACE

The namespace that the
Chronicle logs are labeled
with.

dummy-namespace No - No

POLL_
INTERVAL

Frequency interval at which
the function executes to get
additional log data (in
minutes). This duration must
be the same as the Cloud
Scheduler job interval.

“10”

Note: Value should be
in quotes.

Yes 10 No

ARMIS_
SERVER_URL

Server URL of Armis
platform.

https://lab-
dummy.armis.com

Yes - No

ARMIS_API_
SECRET_KEY

Path of the Google Secret
Manager with the version,
where the Armis API Secret
key is stored.

projects/{project_
id}/secrets/{secret_
id}/versions/{version_
id}

Yes - Yes

HTTPS_PROXY Proxy server URL. http://address:port No - No

CHRONICLE_
DATA_TYPE

Chronicle data type to push
data into the Chronicle.

ARMIS_
ALERTS,ARMIS_
ACTIVITIES,ARMIS_
DEVICES,ARMIS_
VULNRABILITIES

Yes - No

3.5.1 Configuring the namespace

The namespace that the Chronicle logs are ingested into can be configured by setting the CHRONICLE_
NAMESPACE environment variable.

3.5.2 Using Secrets

Environment variables marked as secret must be configured as secrets on Google Secret Manager. For
more information, refer to REF.

Once the secrets are created on Secret Manager, use the secret's resource ID as the value for
environment variables.

Google Chronicle 7

https://cloud.google.com/secret-manager/docs/creating-and-accessing-secrets#create

For example:
CHRONICLE_SERVICE_ACCOUNT: projects/{project_id}/secrets/{secret_
id}/versions/{version_id}

4 View Parsed logs in the Chronicle UI

Log in to https://crestdatasys.backstory.chronicle.security/.

Type .* in the search field and click Search.

Click on raw log search.

Select Run Query as Regex.

Set the time interval in which the logs are ingested.

Select the log source and click search.

Open any particular log to check.

Parsed logs will be visible under the UDM Event section in Chronicle.

© Copyright Armis Security 2023 8

https://crestdatasys.backstory.chronicle.security/

5 Mappings

5.1 Alerts field mapping

UDM Field Name RawLog Field
Name

Logic

metadata.event_type This field is set to “GENERIC_EVENT”.

metadata.product_name This field is set to “ARMIS”.

metadata.vendor_name This field is set to “ARMIS”.

metadata.product_log_id alertId

metadata.description description

network.session_id connectionIds `connectionIds` is of type array. The values of an
array will be converted into comma separated string
and then mapped with the UDM field.

about.labels[activity_uuid] activityUUIDs

principal.asset.asset_id deviceIds First assignees object would be mapped in
principal.asset.asset_id and remaining would be
mapped in principal.labels

security_result.severity severity If Severity is equal to "High" then security_
result.severity is set to "HIGH".

Else If Severity is equal to "Low" then security_
result.severity is set to "LOW".

Else If Severity is equal to "Medium" then security_
result.severity is set to "MEDIUM".

Google Chronicle 9

UDM Field Name RawLog Field
Name

Logic

security_result.severity_
details

severity

security_result.alert_state status If Status is equal to "Unhandled" then security_
result.alert_state is set to "ALERTING".

Else If Status is equal to "Resolved" or Status is
equal to "Suppressed" then security_result.alert_
state is set to "NOT ALERTING".

metadata.event_timestamp time

metadata.product_event_type title metadata.product_event_type is set to "ALERT:
<value of title>".

security_result.category type If type is equal to "System Policy Violation" or type
is equal to "Policy Violation" then security_
result.category is set to "POLICY_VIOLATION".

security_result.category_
details

type

5.2 Activities field mapping

UDM Field Name RawLog Field
Name

Logic

metadata.event_type This field is set to “GENERIC_EVENT”.

metadata.product_name This field is set to “ARMIS”.

metadata.vendor_name This field is set to “ARMIS”.

metadata.product_log_id activityUUID

metadata.event_timestamp time

metadata.description title

metadata.product_event_type type

network.session_id connectionIds `connectionIds` is of type array. The
values of an array will be converted into
comma separated string and then
mapped with the UDM field.

security_result.description content

security_result.severity If current_severity is equal to "High"
then security_result.severity is set to
"HIGH".

Else If current_severity is equal to

© Copyright Armis Security 2023 10

UDM Field Name RawLog Field
Name

Logic

"Low" then security_result.severity is
set to "LOW".

Else If current_severity is equal to
"Medium" then security_result.severity
is set to "MEDIUM".

security_result.severity_details Extracted "current_severity" from "title"
field using grok pattern and then
mapped with the UDM field.

security_result.detection_fields["past_
severity"]

Extracted "past_severity" from "title"
field using grok pattern and then
mapped with the UDM field.

security_result.detection_fields["past_
risk_score"]

Extracted "past_risk_score" from "title"
field using grok pattern and then
mapped with the UDM field.

security_result.detection_fields
["present_risk_score"]

Extracted "present_risk_score" from
"title" field using grok pattern and then
mapped with the UDM field.

principal.asset.asset_id deviceIds First assignees object would be
mapped in principal.asset.asset_id and
remaining would be mapped with
principal.labels

principal.asset.attribute.labels
["device_name"]

Extracted "device_name" from "title"
field using grok pattern and then
mapped with the UDM field.

target.ip Extracted "target_ip" from "title" field
using grok pattern and then mapped
with the UDM field.

target.labels["interface_name"] Extracted "interface_name" from "title"
field using grok pattern and then
mapped with the UDM field.

intermediary.asset.asset_id sensor.name `intermediary.asset.asset_id` is set to
"ASSET_ID: <value of sensor.name>".

intermediary.asset.category sensor.type

about.labels["protocol"] protocol

about.labels["site"] site

extensions.vulns.vulnerabilities.cve_id Extracted "cve_id" from "title" field using
grok pattern and then mapped with the
UDM field.

Google Chronicle 11

5.3 Devices field mapping

UDM Field Name RawLog Field Name Logic

metadata.product_name This field is set to “ARMIS”.

metadata.vendor_name This field is set to “ARMIS”.

metadata.entity_type `metadata.entity_type` is set to "ASSET".

entity.asset.asset_type type If type is equal to "Mobile Phones" then
entity.asset.asset_type is set to
"MOBILE" Else If type is equal to
"Personal Computers" then
entity.asset.asset_type is set to
"LAPTOP".

entity.asset.first_seen_time firstSeen

entity.asset.last_discover_time lastSeen

metadata.product_entity_id id

entity.ip ipAddress,ipv6

entity.mac macAddress

entity.asset.hardware.manufacturer manufacturer

entity.asset.hardware.model model

entity.asset.asset_id name `entity.asset.asset_id` is set to "ASSET_
ID: <value of name>".

entity.platform operatingSystem If operatingSystem is equal to "ios" then
entity.platform is set to "IOS".

Else "operating_system" will be mapped
as a key for entity.labels with value of
operatingSystem.

entity.platform_version operatingSystem

entity.user.userid userIds First assignees object would be mapped
in entity.user.userid and remaining
would be mapped with entity.labels

entity.labels["risk_level"] riskLevel

entity.labels["access_switch"] accessSwitch

entity.labels["boundaries"] boundaries

entity.labels["business_impact"] businessImpact

entity.asset.category category

© Copyright Armis Security 2023 12

UDM Field Name RawLog Field Name Logic

entity.labels["sensor_name"] sensor.name

entity.labels["sensor_type"] sensor.type

entity.labels["site_location"] site.location

entity.labels["site_name"] site.name

entity.labels["tags"] tags tags` is of type array. The values of an
array will be converted into comma
separated strings and then mapped with
the UDM field.

entity.labels["visibility"] visibility

relations.entity.asset.first_seen_time dataSources.firstSeen

relations.entity.asset.last_discover_
time

dataSources.lastSeen

relations.relationship This field is set to `OWNS`.

relations.entity_type dataSources.name If dataSources.name is equal to "User"
then relations.entity_type is set to
"USER" Else relations.entity_type is set
to "RESOURCE".

relations.entity.asset.asset_id dataSources.name

relations.entity.labels[datasource_
type]

dataSources.types Type of dataSources.types is an array.
The values of an array will be converted
into comma separated string and then
mapped with the UDM field.

5.4 Vulnerabilities field mapping

UDM Field Name RawLog Field Name Logic

metadata.event_type This field is set to “GENERIC_EVENT”.

metadata.product_name This field is set to “ARMIS”.

metadata.vendor_name This field is set to “ARMIS”.

metadata.url_back_to_product vulnerabilities_matches

metadata.product_log_id id

metadata.description description

extensions.vulns.vulnerabilities.cv
e_id

cveUid

security_result.detection_fields
["affected_devices_count"]

affectedDevicesCount

Google Chronicle 13

UDM Field Name RawLog Field Name Logic

extensions.vulns.vulnerabilities.ab
out.labels["attack_complexity"]

attackComplexity

extensions.vulns.vulnerabilities.ab
out.labels["attack_vector"]

attackVector

extensions.vulns.vulnerabilities.ab
out.labels["availability_impact"]

availabilityImpact

extensions.vulns.vulnerabilities.ab
out.labels["botnets"]

botnets `botnets` is of type array. The values
of an array will be converted into
comma-separated strings and then
mapped with the UDM field.

extensions.vulns.vulnerabilities.ab
out.labels["cisa_due_date"]

cisaDueDate

extensions.vulns.vulnerabilities.na
me

commonName

security_result.detection_fields
["confidentiality_impact"]

confidentialityImpact

extensions.vulns.vulnerabilities.cv
ss_base_score

cvssScore

extensions.vulns.vulnerabilities.ab
out.labels["epss_percentile"]

epssPercentile

extensions.vulns.vulnerabilities.ab
out.labels["epss_score"]

epssScore

extensions.vulns.vulnerabilities.fir
st_found

firstReferencePublishDate

extensions.vulns.vulnerabilities.ab
out.labels["first_weaponized_
reference_publish_date"]

firstWeaponizedReferencePu
blishDate

extensions.vulns.vulnerabilities.ab
out.labels["has_ransomware"]

hasRansomware

extensions.vulns.vulnerabilities.ab
out.labels["exploitability_score"]

exploitabilityScore

security_result.detection_fields
["impact_score"]

impactScore

security_result.detection_fields
["integrity_impact"]

integrityImpact

extensions.vulns.vulnerabilities.ab
out.labels["is_weaponized"]

isWeaponized

extensions.vulns.vulnerabilities.ab
out.labels["latest_exploit_

latestExploitUpdate

© Copyright Armis Security 2023 14

UDM Field Name RawLog Field Name Logic

update"]

security_result.detection_fields
["num_of_exploits"]

numOfExploits

security_result.detection_fields
["number_of_threat_actors"]

numberOfThreatActors

security_result.detection_fields
["avm_rating"]

avmRating

security_result.detection_fields
["org_priority_manual_change_
reason"]

orgPriorityManualChangeRea
son

principal.user.userid orgPriorityManualChangedBy

principal.labels["org_priority_
manual_update_time"]

orgPriorityManualUpdateTim
e

security_result.detection_fields
["privileges_required"]

privilegesRequired

extensions.vulns.vulnerabilities.ab
out.labels["published_date"]

publishedDate

extensions.vulns.vulnerabilities.ab
out.labels["reported_by_google_
zero_days"]

reportedByGoogleZeroDays

Google Chronicle 15

UDM Field Name RawLog Field Name Logic

extensions.vulns.vulnerabilities.ab
out.labels["scope"]

scope

extensions.vulns.vulnerabilities.se
verity

severity If severity is equal to "Critical" then
extensions.vulns.vulnerabilities.sever
ity is set to "CRITICAL"

Else If severity is equal to "High" then
extensions.vulns.vulnerabilities.sever
ity.severity is set to "HIGH"

Else if severity is equal to "Medium"
then
extensions.vulns.vulnerabilities.sever
ity.severity is set to "MEDIUM"

Else If severity is equal to "Low" then
extensions.vulns.vulnerabilities.sever
ity.severity is set to "LOW".

extensions.vulns.vulnerabilities.se
verity_details

severity

extensions.vulns.vulnerabilities.ab
out.labels["status"]

status

extensions.vulns.vulnerabilities.ab
out.labels["threat_tags"]

threatTags `threatTags` is of type array. The
values of an array will be converted
into comma-separated strings and
then mapped with the UDM field.

about.labels["user_interaction"] userInteraction

© Copyright Armis Security 2023 16

6 Limitations

CBN parser will only be able to parse the log mentioned in Supported log Types/Events.

We suggest using the second generation of Cloud Function. The first generation of Cloud Function has a
maximum execution time of 9 minutes and the second generation of Cloud Function has a maximum
execution time of 60 minutes. If the execution time of the Cloud Function exceeds timeout then there
are chances that the complete data (Alerts, Activities, Devices, Vulnerabilities) is not ingested in the
Chronicle.

Only the HTTPS protocol is supported for Armis API calls.

Chronicle does not support duplicate batch entries, so if the whole batch is duplicated then it will not
ingest into the Chronicle.

Cloud function has a limitation in that each instance of a function handles only one concurrent request at
a time. This will result in data loss if the data fetching process takes time more than the scheduled time.
For Example: If the Poll interval and Scheduler time are set to 10 minutes so the scheduler will invoke the
cloud function every 10 minutes but suppose the scheduler invokes the function for the first time and it
takes 15 minutes to fetch the data then, in this case, the second invocation will be skipped and data loss
will occur as a result.

Poll interval should not be greater than 99 days to avoid few edge cases as Armis API supports a
maximum timeframe of 100 days.

At a time there would be only one valid value of poll interval for all the different event data types.

Google Chronicle 17

https://docs.google.com/document/d/1McixcxIuGwjXNOixahFtIi6XGN4JB94ozmdi63kwd-c/edit#heading=h.wo5vxg6pdyha

7 Steps to fetch the historical data

Steps to fetch the historical data all at once and then continue with the real-time data collection:

Configure the POLL_INTERVAL environment variable in minutes for which the historical data needs to
be fetched.

As the cloud function is configured, the function can be triggered using a scheduler or manually by
executing the command in Google Cloud CLI.

8 Troubleshooting

GCloud logs can be used for troubleshooting.

Steps on how we can get GCloud logs:

Log in to the "https://console.cloud.google.com/ using valid credentials.

Navigate to 'Cloud functions' and click on the deployed function where you can find the logs module.

Logs can be filtered using severity.

Sometimes GCloud default logs are not visible in the logs module of Cloud Function after testing the
function manually or when the scheduler job invokes the function. To resolve this issue a quick page
refresh is required on the GCloud.

If you test the cloud function immediately after deploying it on gcloud, It might be possible that the cloud
function will not work as expected. To resolve this, wait for a few seconds and then test it.

If in case, the cloud function stops its execution because memory exceeds the limit, configure the cloud
function’s memory configuration and increase the memory limit. For more information click here.

Unauthenticated invocation should be set as true while deploying cloud function.

If output generated from parser is not as per the expectation, make sure to disable the parser extension
and to double check the mappings mentioned in the mapping document.

If the issue still persists, please contact support@armis.com

9 References

Install the gcloud CLI

Deploying cloud functions from local machine

© Copyright Armis Security 2023 18

https://console.cloud.google.com/
https://cloud.google.com/functions/docs/configuring/memory
mailto:support@armis.com
https://cloud.google.com/sdk/docs/install
https://cloud.google.com/functions/docs/deploying/filesystem

	Table of contents
	1 Overview
	2 Prerequisites
	3 Steps for deploying and executing the ingestion script
	3.1 Add the secret in Secret Manager
	3.2 Deploying the function on GCloud
	3.3 Steps to create the scheduler
	3.4 Setting up the directory
	3.5 Setting the required runtime environment variables
	3.5.1 Configuring the namespace
	3.5.2 Using Secrets

	4 View Parsed logs in the Chronicle UI
	5 Mappings
	5.1 Alerts field mapping
	5.2 Activities field mapping
	5.3 Devices field mapping
	5.4 Vulnerabilities field mapping

	6 Limitations
	7 Steps to fetch the historical data
	8 Troubleshooting
	9 References

