
A set of critical vulnerabilities for Aruba
and Avaya switches that can break

network segmentation

Gal Levy
Yuval Sarel
Noam Afuta
Barak Hadad

TLStorm ©2022 ARMIS, INC. 1

Table of Contents
Introduction 2

Who we are 3

External Libraries as an entry point 3

The Framwork4shell vulnerabilities 4

NanoSSL 5

Vulnerable Switches 6

Network Segmentation 6

Captive Portal 6

CDPwn 7

Discovered vulnerabilities 8

Recap - APC SmartConnect Vulnerabilities 8

CVE-2022-22806 8

CVE-2022-22805 8

Avaya/ExtremeNetworks 8

CVE-2022-29861 (9.8 CVSS score) – HTTP header parsing stack overflow 12

Vuln 3 - HTTP POST request handling heap overflow 15

End-of-life vulnerability 17

Aruba/HPE 17

CVE-2022-23677 (9.0 CVSS score) – NanoSSL misuse on multiple interfaces (RCE) 17

CVE-2022-23676 (9.1 CVSS score) – RADIUS client memory corruption vulnerabilities 19

RADIUS 20

RADIUS Client Vulnerabilities 20

Exploiting the NanoSSL bug - Examples 22

APC CVE-2022-22805 exploitation 22

Inter-Processor-Communication 22

Utilizing “write-N-zeros-where” 24

Aruba CVE-2022-23677 exploitation 26

Heap overflow turned remote code execution 26

Heap format 26

Malloc the text section 27

Final notes 28

TLStorm ©2022 ARMIS, INC. 2

Introduction
In March 2022, we disclosed TLStorm1.0 – a set of critical vulnerabilities in APC Smart-UPS devices. The
vulnerabilities allow an attacker to take control over Smart-UPS devices from the internet with no user
interaction and make the UPS literally go up in smoke. The root cause for these vulnerabilities was a
misuse of NanoSSL, a popular TLS library by Mocana.

Using the Armis knowledgebase—a database of over 2 billion devices and over 6 million device
profiles—we were able to identify dozens of devices using Mocana NanoSSL, including two popular switch
vendors that are affected by the same misuse of the NanoSSL library.

These vendors are Aruba (acquired by HP) and Avaya Networking (acquired by Extreme Networks). We
have found that both vendors have switches vulnerable to remote code execution (RCE) vulnerabilities that
can be exploited over the network.

This research details our new findings, dubbed TLStorm 2.0, which include vulnerabilities that could allow
an attacker to take full control over these switches. The exploitation of these RCE vulnerabilities has some
severe implications discussed in this paper, such as breaking of network segmentation, allowing lateral
movement, data exfiltration to the Internet and captive portal escape.

Who we are

Armis Labs is the Armis research group and is focused on mixing and splitting the atoms that comprise the
IoT devices that surround us - be it a smart personal assistant, a benign-looking printer, a SCADA controller,
or a life-supporting device such as a hospital bedside patient monitor.

Our previous research includes:

● TLStorm - Three critical vulnerabilities discovered in APC Smart-UPS devices which can allow
attackers to remotely manipulate the power of millions of enterprise devices.

● PwnedPiper - Nine vulnerabilities in Swisslog Pneumatic Tubes System (PTS) - a critical infrastructure
used in hospitals

● Modipwn - Authentication bypass leads to remote-code-execution in Schneider Electric Modicon PLCs

● NAT Slipstreaming 2.0 - A NAT bypass technique that abuses support for VoIP protocols by NATs

● EtherOops - Exploit utilizing packet-in-packet attacks on ethernet cables to bypass firewalls & NATs.

● CDPwn - Five critical vulnerabilities in various implementations of the Cisco Discovery Protocol.

● URGENT/11 - 11 Zero-Day vulnerabilities impacting VxWorks, the most widely used Real-Time
Operating System (RTOS).

● BlueBorne - An attack vector targeting devices via RCE vulnerabilities in Bluetooth stacks used by
over 5.3 Billion devices.

External Libraries as an entry point

While the use of external libraries comes with a lot of advantages, like in-house development time
reduction, or using a third party code written by developers coming from a specific field of expertise, it also

TLStorm ©2022 ARMIS, INC. 3

https://www.armis.com/research/tlstorm/
https://www.armis.com/device-knowledgebase/
https://www.armis.com/research/tlstorm
https://www.armis.com/research/pwnedpiper
https://armis.com/modipwn
https://www.armis.com/research/nat-slipstreaming-v20/
https://www.armis.com/research/etheroops/
https://www.armis.com/research/cdpwn/
https://www.armis.com/urgent11/
https://www.armis.com/research/blueborne/

brings with it a built-in uncertainty. Implanting a “foreign” code, means the user is fully trusting it to be
implemented safely, since any security issues originated in the external library, are embedded within it, and
automatically become security issues which the user has less control over.

These external libraries are shared between various product lines, making them a target for attackers -
finding one breach in one library can “reward” the attacker with a series of attacking tools for many targets.

We could get a sense of the potential scale of finding such a software supply chain in previous URGENT/11
research, where the vulnerable TCP/IP stack (IPNet) was part of the supply chain of many IoT operating
systems like VxWorks, INTEGRITY and more, seeding a monstrous tree of inherited vulnerabilities, putting
billions of endpoints at risk eventually.

Forbes article covering URGENT/11, reporting of 2 Billion vulnerable IoT devices

The Framwork4shell vulnerabilities

Probably the two most significant security disclosures of the previous year were log4shell and spring4shell,
both originated in an external library used widely by Java code frameworks. These two were a textbook
use case for the risk of a bug in an external library, putting millions of users at risk for using a seemingly
innocent external library. In these cases, both libraries were open source, and the critical bugs were lying
inside the code for years unnoticed. These events were a painful reminder for the community of the
significance of flaws in widely used libraries.

Official warning by the CyberSecurity & Infrastructure Security Agency of the USA

TLStorm ©2022 ARMIS, INC. 4

https://www.armis.com/urgent11/
https://www.windriver.com/products/vxworks
https://www.ghs.com/products/rtos/integrity.html
https://www.forbes.com/sites/zakdoffman/2019/07/29/warning-as-2-billion-medical-industrial-and-enterprise-iot-devices-at-risk-of-attack/?sh=774425ec33af
https://www.armis.com/log4j/
https://www.armis.com/blog/new-spring4shell-vulnerability-has-organizations-on-high-alert-in-the-post-log4j-era/
https://www.cisa.gov/news/2021/12/22/cisa-fbi-nsa-and-international-partners-issue-advisory-mitigate-apache-log4j

NanoSSL

In the TLStorm research we demonstrated how an attacker was able to exploit the NanoSSL library created
by Mocana, a company that supplies third party cryptographic solutions, acquired lately by DigiCert.

Mocana highlights its advantage as a close source library, comparing to the main actor of ssl libraries, the
famous OpenSSL library,

Taken from a white paper written by Mocana

However, advanced research methods do not require access to source code. Moreover, the library itself
does not even have to include critical bugs to experience attacks by bad actors. The risk from external
sources is not limited to bugs in its implementation, a misuse of the library may put it in an unintended state
that the library was not meant to handle. Especially when close source libraries are used, and the user is
“blind” to the implementation itself, the user must implement a glue-logic code that connects its code to the
external library. If the user does not follow the instructions of the external API tightly, critical bugs can be
exploited even if both ends of the glue-logic are flawlessly implemented. We have demonstrated an
example of that in the TLStorm1.0 whitepaper.

Inspired by the disastrous impact caused by the log4shell vulnerability, we understood the potential risk of
the NanoSSL bug as part of a widely used external library. Though the root cause of the NanoSSL bug
comes from a misuse of the API rather than a straight forward bug in the package, it still indicates a
developers’ approach that might recur in other vendors, in the very same exploitable manner. In other
words, any vendor using NanoSSL relying on similar wrong assumptions as the ones taken by APC, is
vulnerable to TLStorm attacks.

TLStorm ©2022 ARMIS, INC. 5

https://www.mocana.com/
https://www.digicert.com/
https://www.infineon.com/dgdl/Infineon-The+Dangers+of+Using+OpenSSL+for+Secure+IoT-ABR-v03_17-EN.pdf?fileId=5546d4625b10283a015b1e96f2b100e3
https://info.armis.com/rs/645-PDC-047/images/Armis-TLStorm-WP%20%281%29.pdf

int coap_received_sock_cb()

{

...

if (pbuf)

{

coap_client_ops = coap_client->coap_client_ops;

if (coap_client_ops && coap_client_ops->mocana_ssl_recv_message)

// calling the inner handler if exists, ignoring the return value

coap_client_ops->mocana_ssl_recv_message(

coap_client,

pbuf);

tcp_recved(tpcb, pbuf->tot_len);

pbuf_free(pbuf);

...

}

Reminder - APC misuse of NanoSSL. mocana_ssl_recv_message return value is ignored.

NanoSSL is widely spread among vendors, and known for being one of the most trust-worthy third party
TLS solutions. Besides Schneider Electric, other industry giants are also identified as Mocana’s clients,
among them are Siemens, IBM, HP, Lenovo and more. Armis knowledge-base allows us a simple heuristic
for pairing visible TLS stack to a device with a set of other identifiers, and by that we set out to find various
NanoSSL usages. In this research we focused on two instances of NanoSSL found in popular network
switches. There are surely many more we did not explore.

Vulnerable Switches

Before we dive into the vulnerabilities themselves we should first cover the security incentives for
researching network switches, both by attackers and defenders. These incentives are based on the
concept of “network segmentation”.

Network Segmentation

Every network is composed by the devices (endpoints) that use it, but also by the devices that create its
backbone - network appliances like routers and switches. These devices are often overlooked when
examining the security concerns of an organization even though they themselves implement the concept
of sub-network isolation (i.e. network segments, or VLANs). This virtual concept of splitting the network into
segments is the first line of defense against attackers trying to perform lateral movement.

To shed some light on this concern, let’s explore a specific way of enforcing network segmentation, which
later in this paper will be a feature of interest.

Captive Portal

A captive portal is a web page displayed to new users after connecting to a network (usually using Wi-Fi),
acting as a portal to the network. There, admins most commonly prompt users with some requirements to
enter the network, like authentication, payment or agreement to a policy or terms.

TLStorm ©2022 ARMIS, INC. 6

Such portals are most common in networks created for “casual” guest users, such as airport lounges or
shopping malls. Such users are held “captive” in this tiny segment of the network (comprising only the user
and the access point) until they can achieve the needed criteria for entrance to the network. The captive
portal is protecting the organizations needs, whether they are financial, legal or security focused.

Example of captive portal at a starbucks store, taken from #1 and #2

CDPwn

Another example exploring the crucial role network equipment and network segmentation have in keeping
the network protected is another research by Armis Labs - CDPwn. In that research we found several
vulnerabilities in layer 2 protocols in popular network equipment, and explored the implication they have.
For further reading please refer to the CDPwn whitepaper.

Example from CDPwn, flattened network segmentation

TLStorm ©2022 ARMIS, INC. 7

https://www.askdavetaylor.com/connect-starbucks-wi-fi-on-android-phone/
https://jpcybersec.com/2019/07/22/spoof-starbucks-wifi-and-steal-credentials-and-more/
https://info.armis.com/rs/645-PDC-047/images/Armis-CDPwn-WP.pdf

Combining what we’ve learned from CDPwn about network segmentation and its weak spots, and the
vulnerabilities we’ve found by tracking the NanoSSL libraries supply chain traces, we’ve found several
critical vulnerabilities in popular network equipment and leveraged them to some severe implications.

Discovered vulnerabilities

Recap - APC SmartConnect Vulnerabilities

As mentioned, on March 8th, we disclosed 3 critical vulnerabilities in APC’s UPS devices. 2 of the
vulnerabilities originated by a misuse of Mocana's TLS library NanoSSL:

CVE-2022-22806

TLS authentication bypass: A state confusion in the TLS handshake leads to authentication bypass, leading
to remote code execution (RCE) using a network firmware upgrade.

CVE-2022-22805

TLS buffer overflow: A memory corruption bug in packet reassembly (RCE). This vulnerability can be
triggered whenever a user of NanoSSL does not close the TLS connection after SSL_recv returns an error
code, and proceeds to call SSL_recv again afterwards. The simple nature of this vulnerability and the high
likelihood of a developer making this easy-to-miss mistake when using an external library’s API, inspired us
to search for more devices that use Mocana’s NanoSSL, and to see if they were indeed also vulnerable to
the same attack.
The vulnerabilities in this research paper, along with the vulnerabilities in the previous TLStorm research
paper, highlight how a flaw in a single library means every device using said library could be potentially
vulnerable to the same attack concept.

Avaya/ExtremeNetworks

This newly found set of vulnerabilities is exposed via the same attack surface - the switch’s web
management portal. Accessing the web portal’s landing page does not require authentication in itself,
meaning it allows any user in the network to establish TLS communication, and set up a pre-authenticated
secured peer. Such pre-authenticated communication leads to various flows of HTTP POST packets
processing, where we found three critical vulnerabilities. The nature of this direct pre-authenticated
network access elevates the severity of these vulnerabilities to the most critical level, allowing a zero-click
attack with a very low complexity.

But first we need to understand the attack surface better, and specifically the bottleneck of every single
incoming byte from the TLS communication peers - the routine mocana_recv_wrapper.

TLStorm ©2022 ARMIS, INC. 8

https://info.armis.com/rs/645-PDC-047/images/Armis-TLStorm-WP%20%281%29.pdf

int mocana_recv_wrapper(void * ssl_sock, char * p_out_buff, int buff_size)

{

...

errno = mocana_tls_recv(..., p_out_buff, buff_size, &bytes_received, ...);

if (errno >= 0)

return bytes_received;

return errno;

...

}

mocana_recv_wrapper, return value represents negative errno, or bytes received if positive.

Worth noting that this routine returns a signed integer value - negative for error, positive for successful,
representing the amount of bytes read. If the read is finished, the return value of zero is expected,
representing a successful “zero bytes read”. Some of the vulnerabilities occur because of mishandling of
an erroneous return value.

CVE-2022-29860 (9.8 CVSS score) – TLS reassembly heap overflow

This vulnerability is another instance of TLStorm vulnerability, and more precisely it is a variation of
CVE-2022-22805. It perfectly highlights how the very same vulnerable concepts we explored in the APC
research apply to other NanoSSL users.

TLStorm ©2022 ARMIS, INC. 9

https://info.armis.com/rs/645-PDC-047/images/Armis-TLStorm-WP%20%281%29.pdf

int SSL_receiveRecord(tls_connection *tls_connection, chat **packet_payload, ...)

{

if (tls_connection->tls_reassembly_state == AFTER_HEADER) {

// 5. If the function was called in the midst of reassembly,

consume bytes and update state to COMPLETED when target size reached.

return get_tls_received_buffer_bytes(tls_connection,

tls_connection->incoming_msg,

tls_connection->incoming_msg_len,

packet_payload, AFTER_HEADER, COMPLETED, ...);

}

// 1. Get the TLS basic header and update state to AFTER_HEADER

errno = get_tls_received_buffer_bytes(tls_connection,

recv_tls_header,

TLS_HEADER_LENGTH,

packet_payload, BEFORE_HEADER, AFTER_HEADER, ...);

...

if (tls_connection->tls_reassembly_state != BEFORE_HEADER) {

...

// 2. Extract the expected TLS packet length from the received header

extracted_len = get_tls_packet_len(recv_tls_header->len);

tls_connection->incoming_msg_len = extracted_len;

if (extracted_len >= 0x4800)

return LENGTH_LIMIT_VIOLATION_ERROR;

// 3. Reallocate the incoming msg buffer - if it exceeds the pre allocated size

reallocate_incoming_msg_if_needed(tls_connection, tls_connection->incoming_msg_len);

// 4. Consume TLS bytes after header, state to COMPLETED when target size reached

return get_tls_received_buffer_bytes(tls_connection,

tls_connection->incoming_msg,

tls_connection->incoming_msg_len,

packet_payload, AFTER_HEADER, COMPLETED, ...);

}

...

return errno;

}

Reminder - SSL_receiveRecord routine, includes TLS packets reassembly functionality

If this code looks familiar, it is just because it was already presented in CVE-2022-22805 explanation. It is
the very same code used in the APC, with a single difference which is the maximum size of expected_len
of 14832 (0x4800) bytes instead of 2389. This is the same NanoSSL library compiled with different
configuration. One way or another, the vulnerability concept is the same - if there is a piece of code that
ignores the return value, we will be able to exploit the reassembly heap overflow, the exact same way
we have already proven to be feasible in the previous research.

The most simple scan of this function usage shows that our concerns were proven right. The following flow
inside handle_POST process ignores the return value of mocana_recv_wrapper:

TLStorm ©2022 ARMIS, INC. 10

int parse_POST_content_header(void *tls_connection, ...)

{

START:

received_buf[0] = 0;

bytes_recveived = 0;

while (1)

{

// get bytes until reach size limit or ‘\r’

result = mocana_recv_wrapper(tls_connection, &received_buf[bytes_recveived], 1);

if (result <= 0)

return result;

++bytes_recveived;

...

if (bytes_recveived == 400) // if reached max size 400

return -105; // return matching error

if (received_buf[bytes_recveived - 1] == '\r')

{

// return value is not checked

// can launch TLStorm and set malformed exceeding size

mocana_recv_wrapper(tls_connection, waste_byte, 1); // consume following ‘/n’

...

if (!strlen(received_buf)) // supposed to be met when ending with “\r\n\r\n”

return 0; // return success

goto START; // receive next HTTP header component

}

}

}

parse_POST_content_header, reads header components in loops, ignores mocana return value in between

This function consumes HTTP header components in a loop, each component at a time for up-to 400
bytes, or until ‘\r’ is reached. After reaching ‘\r’, we can see that the code attempts to carelessly consume
another byte expecting for ‘\n’ (‘\r\n’ line suffix), validating neither the content nor the return value. An
attacker can send a huge trailing packet instead of the expected ‘\n’ byte. This launches the TLStorm
attack, setting the next TLS packet expected size to a huge size without reallocating the heap buffer.

To actually overwrite the heap, we will need to keep consuming bytes into the non-reallocated buffer. We
do that by shaping the sent data in ‘\r’ separated chunks of up-to 400 bytes. We can stop the override by
ending our buffer with “\r x \r x” 4-byte sequence, where x is a wild card byte (‘\n’ is not validated). Overall
the malicious TLS stream layout looks as follows:

1-400 wild
card bytes

\r 1-400 wild
card bytes

\r x 1-400 wild
card bytes

\r x ... 1-400 wild
card bytes

\r x \r x

Malicious TLS stream layout

TLStorm ©2022 ARMIS, INC. 11

In blue, is the first TLS packet of the stream, followed by a pinkish TLS packet of size larger than the
maximum NanoSSL hardcoded size of 0x4800 bytes. We can see that the attacker has close to complete
flexibility in the choice of override bytes (still needs to insert ‘\r’ between every 1 to 400 bytes), making this
primitive ideal for RCE exploitation.

CVE-2022-29861 (9.8 CVSS score) – HTTP header parsing stack overflow

This vulnerability exists due to an improper boundary check - a buffer is allocated statically to a fixed length
of 200 bytes, and later used as a source buffer for memcpy to another 200-byte stack buffer, but the size
of the copy operation can be manipulated to be 204, or even more since the copied string is not
guaranteed to be null terminated.

The vulnerable flow is triggered when processing HTTP headers when submitted with enctype
“multipart\form-data”:

void handle_POST_multipart_form_data(...)

{

...

get_http_boundary(received_http_buf, &in_str);

if (!receive_tls_and_cmp_str(ssl_sock, in_str, ...))

{

...

}

}

handle_POST_multipart_form_data

First, the boundary value is extracted from the received HTTP header inside get_http_boundary_function:

char * get_http_boundary(char *received_http_buf, char **in_str)

{

...

boundary = zalloc(200); // allocate and zeroise

if (boundary)

{

// Find location of “boundary=” field

if (strncmp("boundary=", html_header, 9))

{

... // set html_header value accordingly

}

...

// find start of boundary received value

start_of_boundary = find_char(html_header, '=') + 1;

...

TLStorm ©2022 ARMIS, INC. 12

do

{

++size; // increase size until first appearance of ‘\r’, ‘\0’, or ‘;’

}

while (start_of_boundary[size] != '\r' ||

start_of_boundary[size] != 0 ||

start_of_boundary[size] != ';');

...

if (size <= 200) // size is exactly 200 if ‘\r’, ‘\0’, or ‘;’ at the 201st

byte

{

memcpy(boundary, start_of_boundary, size);

}

...

return boundary;

}

handle_POST_multipart_form_data

The function is called with a parameter that contains the HTML headers received by the server. This
parameter points to a string allocated on the heap, which is attacker controlled from the network. The
string is allocated and populated in a function which is responsible for fetching the boundary parameter
from the header received from the web. As can be seen in the decompilation of the function, the boundary
value string has a size limit of 200, and if the stop condition is met exactly in the 201st byte, the buffer is
fully occupied with the received boundary value, and if the matching byte is ‘\r’ or ‘;’ rather than zero, the
occupied string will not be null-terminated. This will turn out to be determinantal soon.

The following function to be called after extracting the boundary is receive_tls_and_cmp_str:

TLStorm ©2022 ARMIS, INC. 13

int receive_tls_and_cmp_str(void * ssl_sock, unsigned __int8 *in_str, ...)

{

char buf[200]; // [sp+8h] [-E8h]

str_len = strlen(boundary) + 4; // set received tls copy length

...

received_bytes = 1;

...

do

{

// receive TLS into the stack buffer

bytes_recveived_1 = mocana_recv_wrapper(ssl_sock,

&buf[received_bytes],

str_len - received_bytes);

retval = bytes_recveived_1;

if (bytes_recveived_1 < 0)

return retval;

received_bytes += bytes_recveived_1;

}

while (received_bytes < str_len);

...

}

receive_tls_and_cmp_str

We can see here that the function starts with calculating the TLS reception length, and for this calculation it
adds 4 to the length of the freshly extracted boundary string. However, we already know that an attacker
can set this string to not be null-terminated, which means that the length value will depend on the first
appearance of ‘\0’ in the heap after the boundary buffer. Having this null terminator in a distance of at least
40 bytes from the end of the boundary value, allows an attacker to override the stack deep enough to
reach the Link Register (LR) with TLS controlled data, and gain RCE. This could be achieved by heap
shaping, or probably by statistically spraying the vulnerable payload enough times.

The exploitation requires first sending HTTP POST with boundary value of the full 200-byte size:

“boundary=” boundary value - 200 bytes not including ‘\r’, ‘\0’, or ‘;’ ‘\r’ or ‘;’

Malicious boundary value

This value should be placed before heap buffer not containing zeroes for at least 40 bytes, to form a valid
string of size larger than 240 bytes:

some heap buffer 200-byte boundary value 1..40 or more non zero bytes ‘\0’

Heap layout in exploit flow, boundary value string length is larger than 240 bytes

And this state should be followed by another TLS packet of at least 240 bytes:

TLStorm ©2022 ARMIS, INC. 14

stack values 200 stack buffer 36 bytes of stack values LR

stack values 240 TLS bytes sent

Stack layout in receive_tls_and_cmp_str, before and after call to mocana_recv_wrapper

By overwriting LR, gaining a remote code execution is a relatively simple task, using
return-oriented-programming (ROP) technique or another info leak vulnerability.

Vuln 3 - HTTP POST request handling heap overflow
This vulnerability also originates from a mishandling of Mocana return value. In this case, the return value is
not fully ignored, but simply assumed to be successful only. The handle_POST routine calls
mocana_recv_wrapper in loop with a stop condition of zero return. I.e, finished reading, and every
non-zero return value is treated as a valid read bytes amount, including negative error values:

void handle_POST(ssl_socket_t * ssl_socket, avaya_struct_t * avaya_struct){

...

// calculate the malloc size, per user controlled data

malloc_size_errno = malloc_size_per_type(..., &malloc_size, ATOI_TYPE);

if (malloc_size_errno >= 0)

{

// Allocate the buffer per input allocation size plus one

buff = malloc(malloc_size + 1);

if (buff)

{

if (malloc_size)

{

tot_len = 0;

while (tot_len < malloc_size) // success condition

{

next_len = mocana_recv_wrapper(ssl_socket,

&buff[tot_len],

malloc_size - tot_len);

if (!next_len) // stop condition, when zero is received

goto FINISH;

tot_len += next_len; // next_len can be a negative mocana errno

}

...

handle_POST, bytes are consumed and accumulated until mocana_recv_wrapper returns zero

We can see here the mocana_recv_wrapper return value handling bug, and tot_len is accumulated until a
zero return value is reached (end of data). To exploit this bug, we need to understand where buff - the
destination buffer of mocana_recv_wrapper - originates from. We can see that buff is dynamically
allocated during this function, with an allocation size of malloc_size + 1. malloc_size is user controlled, in
the full 32bit range from 0 to 0xFFFFFFFF (signed int “-1”). When inserting input malloc_size “-1”, the actual

TLStorm ©2022 ARMIS, INC. 15

allocation is eventually using input size 0 (0xFFFFFFFF + 1). This device’s particular malloc implementation
fixes allocation size 0 to 1, and succeeds:

int malloc_most_inner(..., int size, ...)

{

if (size == 0)

size = 1;

...

}

malloc_most_inner, malloc size zero is fixed to one, practically operates as malloc(1).

After passing the allocation validation successfully, the TLS reception loop is being performed. In each
iteration an attempt to read up to “malloc_size - tot_len” bytes of tls packets takes place. The first iteration
will attempt to read up to 0xFFFFFFFF bytes. However, there’s a boundary check inside Mocana tls receive
function which validates that the signed recv size is positive:

int mocana_tls_recv(..., int max_recv_size, ...)

{

...

if (max_recv_size <= 0)

return -6010;

...

}

mocana_tls_recv, returning -6010 errno if max_recv_size is negative

This function will fail, returning -6010. However, as seen in the handle_POST function, the returned error is
ignored and treated as the number of bytes read.

Than tot_len is being updated:

𝑡𝑜𝑡_𝑙𝑒𝑛 = 𝑡𝑜𝑡_𝑙𝑒𝑛 + 𝑛𝑒𝑥𝑡_𝑙𝑒𝑛 = 0 − 6010 = − 6010

The next iteration will attempt to read up to “malloc_size - tot_len” again. This time the calculation is:

𝑟𝑒𝑎𝑑 𝑠𝑖𝑧𝑒 = − 1 − 6010 = − 6011

The read attempt will fail again with a boundary check of mocana_tls_recv, returning -6010 again. The read
size will now be:

𝑟𝑒𝑎𝑑 𝑠𝑖𝑧𝑒 = − 6011 − 6010 = − 12021

TLStorm ©2022 ARMIS, INC. 16

After N iterations, the read size will be:

𝑟𝑒𝑎𝑑 𝑠𝑖𝑧𝑒 = − 1 − 6010𝑁

The read size calculation will recur until its sign flips back to positive after an underflow, which happens
exactly after iterations.𝐹𝐿𝑂𝑂𝑅𝐸𝐷(𝐼𝑁𝑇_𝑀𝐼𝑁 / 6010) = 357319

After the underflow occurs, the signed value of the read size will be a huge positive number (just below
MAX_INT 0x7FFFFFFF), resulting in a valid tls buffer size read. Though it seems to be a “too large” size to
read, the actual read size is fully controlled, since the huge calculated value represents only the upper limit
of the TLS reception. Then the TLS content overrides the 1-byte allocated heap buffer, with attacker
controlled data of attacker controlled length which can lead to remote code execution (RCE).

End-of-life vulnerability

This vulnerability, unlike the others, is found in a device family which has reached end-of-life, meaning a
patch for this vulnerability is not, and will not be supplied. These devices, though, can still be found in the
wild, per data acquired from Armis knowledge base. The risk of end-of-life devices is too easy to disregard,
while it poses the very same risk as supported unpatched devices, which usually attracts the main focus of
security offices. We will discuss this issue later in the document.

Aruba/HPE

CVE-2022-23677 (9.0 CVSS score) – NanoSSL misuse on multiple interfaces (RCE)
This vulnerability is another Mocana NanoSSL related vulnerability - caused by the same vulnerable
concepts shown in the TLStorm research for the APC Smart UPS, and CVE-2022-29860 on the
ExtremeNetworks switches shown in this research paper.

Like the others, this vulnerability is caused by the TLS reassembly state confusion first shown in
CVE-2022-22805 on the APC UPS, and the mishandling of error codes by the code using the NanoSSL
API. This vulnerability, along with the others in this paper, highlight how a flaw in a single library means
every device using said library could be potentially vulnerable to the same attack concept.

Let’s take a closer look at this vulnerability. The vulnerable flow occurs when the switch attempts to parse
an incoming HTTPS request from a user on a port with Captive Portal redirection enabled. The purpose of
this parsing code is to create a redirect HTTP response to the URL of the Captive Portal server. The
following is the vulnerable function. After the TLS handshake is concluded, it is called in a loop, with each
iteration triggered when new data is written to the TCP buffer.

TLStorm ©2022 ARMIS, INC. 17

http_request_content * parse_incoming_http(...)

{

...

if (is_session_ssl)

{

// Receive a single TLS record using mocana

rc = SSL_recv_wrapper_mocana(...);

// if Mocana recv fails, close the connection

if (rc < 0)

{

...

return mocana_closeConnection_wrapper(...);

...

}

// While there is still data in the TCP buffer - continue calling mocana SSL_recv

do

{

...

// When there is no more data in TCP buffer, rc is error code (< 0)

rc = SSL_recv_wrapper_mocana(...);

...

}

while (!rc);

// Loop stops once error code is received, but connection is not closed in case of error.

}

...

// check for ‘\r\n\r\n’ to stop receiving new data and start parsing http packet

...

return result;

}

Simplified decompilation of function that receives HTTPS data and parses it to create redirect URL

As we can see in the code above, there are 2 calls to Mocana’s SSL_recv function. Each call to the function
reads a single TLS record, and decrypts it. The first call’s return value is checked, and in case of error the
connection is closed. The second call is within a loop. It is called as long as there is data to be read in the
TCP buffer. Once the TCP buffer is emptied, the SSL_recv function immediately returns with error code
ERR_TCP_READ_ERROR and the loop exits. However - the exact erroneous value of the return value is
not checked, and regardless of the type of error, the connection is not closed. This is very similar to the
other Mocana TLS reassembly vulnerabilities we’ve found. This means that if an attacker can trigger the
vulnerable flow in the second call to SSL_recv, they can set up the vulnerable state confusion, and once
the calling function parse_incoming_http is called again for additional data, the first call to SSL_recv
overwrite the Mocana heap buffer, similarly to the other vulnerabilities we’ve shown. Let’s elaborate on how
this can be achieved.

As we’ve mentioned before, each call to SSL_recv reads a single TLS record. If there is no data to be read
in the TCP buffer, it exits immediately with ERR_TCP_READ_ERROR. Therefore, in order to trigger the state
confusion in the second call to SSL_recv, we must make sure there is data in the TCP buffer at that point.

TLStorm ©2022 ARMIS, INC. 18

To achieve that, an attacker could send 2 TLS records in a single TCP packet. Consider the following TCP
buffers:

TCP packet A:

TLS Record

Type Length Data

23 (Application Data) len(Data) ...

Initial TLS record

TLS Record

Type Length

23 (Application Data) 0x5000
(any size bigger than 0x4800)

Malicious TLS record

TCP packet B:

0x5000 bytes of attacker controlled bytes

PWNPWNPWN…

The first TLS record in packet A will be received and decrypted successfully in the first call, and since there
is more data in the TCP buffer, the second call will be triggered to parse the second, malicious TLS record
of packet A. The second call will reach the vulnerable code in the inner function SSL_recvRecord. If an
attacker intentionally fails the size check inside SSL_recvRecord (using size > 0x4800) they can trigger the
state confusion and cause SSL_recv to return with an error. The details of the state confusion itself are in
the previous TLStorm whitepaper - CVE-2022-22805.

Since the erroneous return value is not checked, the connection will not be closed. The next valid packet
sent will trigger the first call to SSL_recv, and allow an attacker to overwrite the Mocana heap buffer with as
many user-controlled bytes as written in the malicious second record’s TLS header.

CVE-2022-23676 (9.1 CVSS score) – RADIUS client memory corruption vulnerabilities

This vulnerability is in the RADIUS client implementation of the switch. First, a few words about RADIUS

TLStorm ©2022 ARMIS, INC. 19

https://info.armis.com/rs/645-PDC-047/images/Armis-TLStorm-WP%20%281%29.pdf

RADIUS
RADIUS is an authentication/authorization protocol that provides centralized authentication. RADIUS is a
client/server protocol, with the client sending requests to authenticate users or machines, and the server
checking the credentials and info of the user and responding with acceptance or rejection of the request.

A typical access attempt transaction involving RADIUS will usually go like this:

1. A user attempts to gain access to a network server with a set of credentials
2. The network server sends an Access Request message containing information about the user

requesting access, and the credentials it used to the RADIUS server
3. The RADIUS server verifies the credentials of the user and responds with on of the following:

a. Access Accept
b. Access Reject
c. Access Challenge - requesting more information. The RADIUS client responds to this

message with another Access Request

Radius protocol - from wikipedia

The RADIUS server and client hold an agreed upon shared key used for encrypting password and sensitive
information in the packet, and signing the messages with the Message Authenticator field.

RADIUS packets can also carry within them EAP (Extensible Authentication Protocol) data, indicating the
EAP authentication should be performed.

RADIUS Client Vulnerabilities
The vulnerable flow occurs when an access attempt is made to the switch, the switch sends an Access
Request packet to the RADIUS server, and the server responds with an Access Challenge RADIUS packet.
The attack surface is accessible when handling any type of access attempts to the switch. This includes,
SSH, telnet, web, etc.

The vulnerability itself is in the PEAP (an encrypted version of EAP) parsing code of the switch’s RADIUS
client. A RADIUS packet’s data is a list of AVPs - Attribute Value Pairs. Each of these contains the AVP’s
type, its length and the data itself. For example, this is the AVP containing a user’s IP address:

When using EAP authentication, an EAP-Message AVP is added to the message. The data of this AVP is the
content of the EAP fragment itself. EAP is a protocol in and of itself and the EAP fragment’s header contains
a length as well. This is an example of the RADIUS AVP and the EAP fragment encapsulated inside:

TLStorm ©2022 ARMIS, INC. 20

https://en.wikipedia.org/wiki/RADIUS

The vulnerability is caused by mishandling of the two different size fields.

Let's take a look at the vulnerable code:

int get_eap_message_from_packet(radius_packet_t *radius_packet)

{

...
// extract the EAP_Message AVP from the RADIUS packet

eap_attribute = (EAP_message *)get_attribute_from_packet(

&radius_packet->attributes,

EAP_Message,

...);

...
// extract the length from the EAP fragment header - the “inner” length

eap_message_inner_length = eap_attribute->eap_fragment.length

if (eap_message_inner_length - 4 < 0xBFD)

{

// allocate size according to the EAP header length (inner length)

eap_message_buffer = malloc(eap_message_inner_length);

...
// copy bytes from packet - use the size from the AVP (outer length)

memcpy_(eap_message_buffer, &eap_attribute->eap_reassembled, eap_attribute->length - 2);

...

}

get_eap_message_from_packet - simplified decompilation of function that extracts EAP content from RADIUS packet

When attempting to extract the EAP fragment from inside the RADIUS AVP, the code above allocates a
buffer for the data with size from the EAP header. It then uses memcpy to copy bytes into this buffer, using
the size from the AVP header - 2. It does this because normally the RADIUS header length is always EAP
header length plus 2, since it also contains in it the AVP type and length fields. However, since the switch
never verifies that these sizes are actually the expected values, or rather - the expected size difference, an
attacker can send a small size in the EAP header, and a large size in the RADIUS header, causing the
overflow of the allocated buffer.

TLStorm ©2022 ARMIS, INC. 21

For example - the following packet buffer will cause a heap overflow of the eap_message_buffer

RADIUS
headers

AVP header
(EAP Message) EAP fragment

… Type Length Code / ID Length Type … Data

… 79
(EAP-Message)

255 … 5 26
(PEAP)

Attacker
controlled
headers

Attacker
controlled

data

Malicious RADIUS packet

When attempting to parse the example packet above, the switch will allocate a buffer the size of 5 bytes,
and then proceed to copy 255 bytes from the EAP fragment into the buffer. These bytes are almost entirely
attacker controlled and will overwrite the heap - eventually allowing for remote code execution.

Since RADIUS is an authenticated protocol, and the packets are “signed” using a pre-shared secret
between the client and server - an attacker would either need access to the RADIUS server, or to the
shared secret.

Exploiting the NanoSSL bug - Examples

APC CVE-2022-22805 exploitation

Exploiting this vulnerability quickly came across a challenge in the form of the usage of the heap across the
codebase. Using a combination of static analysis and debugging we noticed that the heap is barely used
after initialization. This means that in order to exploit this vulnerability “classic” heap overflow exploitation
approaches like overriding the heap chunks headers and leveraging the heap management to perform
write-what-where won’t work. Combining this with the fact that after the overrun buffer there isn’t any
“interesting” data structure or pointer, we had to find a different approach.

Since the RAM doesn’t implement any Read-Write-Execute restriction, we decided to look at what exists
after the heap. There we were able to find a data structure that enabled a primitive which was escalated to
full RCE exploitation.

Inter-Processor-Communication

The OS implementation is based on recurring mainloop in addition to a bunch of asynchronous interrupts
that update global values used by the mainloop, and so on. However, the code infrastructure still uses
some common building blocks, for a safe implementation of more convoluted objectives, like
communication with external hardware and peripherals. The main structure for representing the memory
buffers delivered between different interfaces is ring buffers. This structure is crucial for understanding
practically everything - from the bootloader firmware update, to the physical voltage control (which will
come in handy later on). The exploitation uses those ring buffers as well.

TLStorm ©2022 ARMIS, INC. 22

Ring buffer structure

In every OS code iteration, the state of the different hardware interfaces is checked by reading those
buffers, and changed by filling them. If the ring buffer state indicates memory corruption, the code clears
their memory and initializes the ring buffer state.

void read_ring_buffer_chunk(ring_buffer *ring_buffer, char *out_buff)

{

if (ring_buffer->cyclic_copy_state <= 2) // Validate ring buffer state

{

... // cyclic copy of buffer

}

else

{

init_ring_buffer_state(ring_buffer); // init the ring buffer if state is invalid

}

}

read_ring_buffer_chunk

void __fastcall init_ring_buffer(ring_buffer *ring_buffer)

{

total_size = ring_buffer->total_size;

progressing_index = 0;

ring_buffer->write_offset = 0;

ring_buffer->read_offset = 0;

ring_buffer->cyclic_copy_state = 0;

while (progressing_index < total_size)

ring_buffer->buff[progressing_index++] = 0;

}

init_ring_buffer

As we can see, a cyclic_copy_state larger than 2, is invalid and triggers ring buffer re-initialization. These
ring buffers representations are found right after the end of the heap.

TLStorm ©2022 ARMIS, INC. 23

ring buffers memory layout

Our strategy was to override the first ring buffers relay structure, and just wait for the mainloop to start a
chain reaction. The ideal goal would be to find a write-what-where primitive using the ring buffer content
relay. We couldn’t find a way to achieve that, since the relay is directed to another memory representation
defined in another structure (which we won’t discuss here) which is not attacker controlled - we could
either copy to our controlled ring buffer from another constant memory source address, or the opposite
direction. In other words this means that if we want to use the relay ring buffer functionality, we either
control the copy destination but not its content, or the copy content but not its destination. This can’t be
escalated to a useful primitive.

Alternatively, we chose to use the ring buffers initialization functionality. As shown earlier, when the ring
buffer state is undefined, the ring buffer is reinitialized - a routine which initializes the header and writes
zeros to the ring buffer’s memory buffers. When overwriting the ring buffer state to an undefined value, the
ring buffer memory pointer to X, and the ring buffer memory size to N, we gain a “write N-zeros to X”
primitive - which means that a controlled amount of sequential zeros can be written to wherever we want in
the RAM. This is a strong primitive, and the path to fully exploiting this vulnerability is at hand.

Utilizing “write-N-zeros-where”

The network buffer which is at the center of this vulnerability is controlled by us, and is not being
reallocated. Our plan is to utilize our new primitive to override with the 3 LSBs of the destination buffer
pointer (which is located at a fixed address). After that override has taken place, sending a new buffer from
the same connection will override another RAM memory rather than the heap. More specifically, the buffer
pointer will point to the start of the RAM at address 0x20000000.

The content of the new buffer will contain a dump of a pre-fetched running device’s memory as a template,
and change only the content of the first function pointer in RAM, which will be the end of our overriding
buffer. The first function pointer in that particular case happens to be a function pointer that is being called

TLStorm ©2022 ARMIS, INC. 24

spontaneously by the mainloop. Since the address of the execution is now attacker controlled, it can be set
to point to the huge unused buffer of the overwritten heap, as the memory space for our shellcode (which
we should have sent in the first packet).

Memory map after every exploitation step

TLStorm ©2022 ARMIS, INC. 25

To summarize:

1) Trigger the heap overflow - a huge buffer that contains a shellcode and overrides the entire
unused heap and the following first ring buffers relay structure.

2) Wait for the mainloop to use the patched ring buffers relay structure, and clear the LSBs of the ssl
sent buffer destination pointer.

3) Send another huge buffer that overrides the start of the RAM - containing a memory dump of the
same device’s RAM start, followed by a patched function pointer that points to the beginning of the
sent buffer from step 1.

4) Wait for the mainloop to call our patched function pointer.

Aruba CVE-2022-23677 exploitation
Heap overflow turned remote code execution

This vulnerability also leads to remote code execution. Considering this is a heap overflow, we started out
with 2 possible directions in mind:

● Overwriting data in the heap that might lead to a stronger primitive. Looking for function pointers,
addresses to user data buffers or any other lead. While there were some strong candidates, we
didn’t find a way to deterministically overwrite them without corrupting other critical data. We found
that, in this case, this approach would be feasible with an additional info leak primitive.

● Overwriting the heap meta-data in order to elevate our writing primitive. This proved to be the
better direction to take.

Heap format

The heap is made out of memory blocks. When a call to malloc takes place, a block of an appropriate size
is chosen and allocated. To keep track of the heap’s blocks, their sizes, and which are free or allocated, the
switch’s OS uses a linked list of free heap blocks. Each free block starts with a header of 3 fields: Block
size, pointer to next block, and pointer to previous block.

Size Next block Previous block Empty data space (size - header_size bytes)

Header of each free heap block

To find a block to allocate, the malloc code traverses this list until it finds a big enough block to satisfy the
user’s request. If the block is bigger than the requested size, it splits into 2 pieces - the first remains free,
and the second is allocated and returned to the user.

TLStorm ©2022 ARMIS, INC. 26

Before allocation After allocation

size size - malloc_size

next next (same)

prev prev (same)

Empty data (size) Empty data (size - malloc_size)

Allocated buffer (malloc_size)

Illustration of a free heap buffer before and after allocation

We now understand that newly allocated buffers are almost always followed by a free buffer header.

Malloc the text section

Since we’re exceeding the boundaries of our heap buffer, we can also overwrite the next free heap block
following our allocated block. This gave us the interesting prospect of overwriting the size and next block
fields of the block header.

Based on this, the exploitation plan goes as follows - overwrite the size field with a value of our choosing,
and overwrite the next block field with an address in the code area of the memory where our malicious
code will eventually be executed. Then send a packet to the switch that will trigger a heap allocation. Since
our buffer will be bigger than the size we wrote to the overwritten heap header, the malloc code will check
the next free buffer, which will now point to the code area we chose. If the “size field” of that header is big
enough, the area will be successfully “allocated”, and any data in the packet will be written directly to the
code area of the memory. The size check means that we have to choose an address in memory that
contains a “size” big enough for the buffer.

TLStorm ©2022 ARMIS, INC. 27

To find candidates for good overwrite addresses, we wrote a script to find suitable sizes in the .text section
(code) of the memory.

Example of address we used in our “fake” heap header

Consider the following example. We overwrite the heap header following our block and write the address
0x4E8D3C0 (as seen in the image above) to the next block field. We also write a size smaller than 0x45f8
to the size field. Then, when we send a packet with the size 0x45f8 to the switch, the “free block” in
address 0x4E8D3C0 will be allocated, and the data in our packet will overwrite the code following this
address. For example, we found a candidate that allowed us to overwrite the code of malloc. Once any
task in the switch calls malloc, the shellcode will be triggered. This is practically game over. We can fix any
corruption of the heap linked list, execute a shellcode, and restore overwritten code or data.

This technique proved to be efficient, succeeding at a reasonable rate. However, it is still a statistical
exploitation, because of possible scheduling issues such as context switches between the allocation of the
“code section buffer” and the memory overwrite. Still, we deemed it good enough to show that this threat
is not theoretical..

Final notes

Both phase one (APC Smart UPS vulnerabilities) and phase two (Network equipment vulnerabilities) of the
TLStorm project emphasize the risk of vulnerabilities deeply embedded in the supply chain of common
software libraries which end up in different devices across different industries. For NanoSSL, a common
misuse made completely different codebases to be vulnerable to almost identical vulnerabilities.

NanoSSL was supposed to act as a security feature, acting as a TLS layer and inhibiting malicious actors
from accessing sensitive communications. But instead, the misusages detailed in this research made
NanoSSL the entry point from which an attacker was able to take control over the hosting device and issue
all types of malicious cyber attacks.

While the discovered vulnerabilities are now patched or mitigated, the TLStorm project is not over yet as
there are probably many more vulnerable devices. We encourage vendors to make sure that they are using
external libraries correctly and not just NanoSSL, but every external library since every external library can
be a hidden attack surface. On the users end, this research underlines the need for identification and
anomaly detection of network activity for connected devices in order to make sure these devices don't
misbehave.

TLStorm ©2022 ARMIS, INC. 28

